Emergent generalized symmetries in ordered phases and applications to quantum disordering

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Salvatore D. Pace
{"title":"Emergent generalized symmetries in ordered phases and applications to quantum disordering","authors":"Salvatore D. Pace","doi":"10.21468/scipostphys.17.3.080","DOIUrl":null,"url":null,"abstract":"We explore the rich landscape of higher-form and non-invertible symmetries that emerge at low energies in generic ordered phases. Using that their charge is carried by homotopy defects (i.e., domain walls, vortices, hedgehogs, etc.), in the absence of domain walls we find that their symmetry defects in $D$-dimensional spacetime are described by $(D-1)$-representations of a $(D-1)$-group that depends only on the spontaneous symmetry-breaking (SSB) pattern of the ordered phase. These emergent symmetries are not spontaneously broken in the ordered phase. We show that spontaneously breaking them induces a phase transition into a nontrivial disordered phase that can have symmetry-enriched (non-)Abelian topological orders, photons, and even more emergent symmetries. This SSB transition is between two distinct SSB phases--an ordinary and a generalized one--making it a possible generalized deconfined quantum critical point. We also investigate the 't Hooft anomalies of these emergent symmetries and conjecture that there is always a mixed anomaly between them and the microscopic symmetry spontaneously broken in the ordered phase. One way this anomaly can manifest is through the fractionalization of the microscopic symmetry's quantum numbers. Our results demonstrate that even the most exotic generalized symmetries emerge in ordinary phases and provide a valuable framework for characterizing them and their transitions.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"7 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.3.080","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the rich landscape of higher-form and non-invertible symmetries that emerge at low energies in generic ordered phases. Using that their charge is carried by homotopy defects (i.e., domain walls, vortices, hedgehogs, etc.), in the absence of domain walls we find that their symmetry defects in $D$-dimensional spacetime are described by $(D-1)$-representations of a $(D-1)$-group that depends only on the spontaneous symmetry-breaking (SSB) pattern of the ordered phase. These emergent symmetries are not spontaneously broken in the ordered phase. We show that spontaneously breaking them induces a phase transition into a nontrivial disordered phase that can have symmetry-enriched (non-)Abelian topological orders, photons, and even more emergent symmetries. This SSB transition is between two distinct SSB phases--an ordinary and a generalized one--making it a possible generalized deconfined quantum critical point. We also investigate the 't Hooft anomalies of these emergent symmetries and conjecture that there is always a mixed anomaly between them and the microscopic symmetry spontaneously broken in the ordered phase. One way this anomaly can manifest is through the fractionalization of the microscopic symmetry's quantum numbers. Our results demonstrate that even the most exotic generalized symmetries emerge in ordinary phases and provide a valuable framework for characterizing them and their transitions.
有序相中的新兴广义对称性及其在量子无序化中的应用
我们探索了一般有序相在低能时出现的丰富的高形式和非可逆对称性。由于它们的电荷由同调缺陷(即畴壁、涡旋、刺猬等)携带,在没有畴壁的情况下,我们发现它们在 $D$ 维时空中的对称性缺陷是由 $(D-1)$ 组的 $(D-1)$ 代表描述的,而这个 $(D-1)$ 组只取决于有序相的自发对称性破缺(SSB)模式。这些新兴对称性在有序相中不会自发被打破。我们的研究表明,自发打破这些对称性会诱发相变,进入一个非无序相,该无序相可能具有对称性丰富的(非)阿贝尔拓扑秩序、光子,甚至更多的新兴对称性。这种 SSB 过渡介于两个不同的 SSB 相之间--一个是普通相,另一个是广义相--这使它成为一个可能的广义非封闭量子临界点。我们还研究了这些新兴对称性的't Hooft 异常,并猜想它们与有序阶段自发破坏的微观对称性之间总是存在混合异常。这种反常现象的一种表现形式是微观对称性量子数的分数化。我们的研究结果表明,即使是最奇特的广义对称也会在普通相中出现,并为描述它们及其转变提供了一个宝贵的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信