Efficient construction of the Feynman-Vernon influence functional as matrix product states

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Chu Guo, Ruofan Chen
{"title":"Efficient construction of the Feynman-Vernon influence functional as matrix product states","authors":"Chu Guo, Ruofan Chen","doi":"10.21468/scipostphyscore.7.3.063","DOIUrl":null,"url":null,"abstract":"The time-evolving matrix product operator (TEMPO) method has become a very competitive numerical method for studying the real-time dynamics of quantum impurity problems. For small impurities, the most challenging calculation in TEMPO is to construct the matrix product state representation of the Feynman-Vernon influence functional. In this work we propose an efficient method for this task, which exploits the time-translationally invariant property of the influence functional. The required number of matrix product state multiplication in our method is almost independent of the total evolution time, as compared to the method originally used in TEMPO which requires a linearly scaling number of multiplications. The accuracy and efficiency of this method are demonstrated for the Toulouse model and the single impurity Anderson model.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyscore.7.3.063","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The time-evolving matrix product operator (TEMPO) method has become a very competitive numerical method for studying the real-time dynamics of quantum impurity problems. For small impurities, the most challenging calculation in TEMPO is to construct the matrix product state representation of the Feynman-Vernon influence functional. In this work we propose an efficient method for this task, which exploits the time-translationally invariant property of the influence functional. The required number of matrix product state multiplication in our method is almost independent of the total evolution time, as compared to the method originally used in TEMPO which requires a linearly scaling number of multiplications. The accuracy and efficiency of this method are demonstrated for the Toulouse model and the single impurity Anderson model.
以矩阵乘积状态高效构建费曼-弗农影响函数
时间演化矩阵积算子(TEMPO)方法已成为研究量子杂质问题实时动态的一种极具竞争力的数值方法。对于小杂质,TEMPO 最具挑战性的计算是构建费曼-弗农影响函数的矩阵积状态表示。在这项工作中,我们提出了利用影响函数的时变不变特性来完成这项任务的高效方法。在我们的方法中,所需的矩阵乘积状态乘法次数几乎与总演化时间无关,而 TEMPO 最初使用的方法则需要按线性比例增加乘法次数。图卢兹模型和单杂质安德森模型证明了这种方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信