{"title":"Backward facing step: from fluid flow to conjugate heat transfer with the coupling library preCICE","authors":"C G Caccia, M Corti, A Della Torre, P Masarati","doi":"10.1088/1757-899x/1312/1/012007","DOIUrl":null,"url":null,"abstract":"The Backward Facing Step geometry is a widely used benchmark problem in Computational Fluid Dynamics literature that is exploitable to validate models, solution methods, and software implementations. Despite a simple geometry, it shows phenomena like separation, reattachment, and re-circulation zones, under different flow conditions (i.e. different Reynolds number or turbulence parameters) it gives different measurable results, suitable for benchmarking activities [1]. Also regarding heat transfer analysis, the backward facing step can be used to investigate a wide variety of operating conditions (both for simple heat transfer cases and coupling heat transfer between the fluid region and a neighboring solid region giving rise to a more complex conjugate heat transfer model) [2]. This work uses the backward facing step as a test case to validate a numerical model built with the open-source Software OpenFOAM 10. The fluid and solid subdomains are connected through the open-source coupling library preCICE [3]. The results, taken from simulations carried out by the authors, show good agreement with the data available in the literature.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1312/1/012007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Backward Facing Step geometry is a widely used benchmark problem in Computational Fluid Dynamics literature that is exploitable to validate models, solution methods, and software implementations. Despite a simple geometry, it shows phenomena like separation, reattachment, and re-circulation zones, under different flow conditions (i.e. different Reynolds number or turbulence parameters) it gives different measurable results, suitable for benchmarking activities [1]. Also regarding heat transfer analysis, the backward facing step can be used to investigate a wide variety of operating conditions (both for simple heat transfer cases and coupling heat transfer between the fluid region and a neighboring solid region giving rise to a more complex conjugate heat transfer model) [2]. This work uses the backward facing step as a test case to validate a numerical model built with the open-source Software OpenFOAM 10. The fluid and solid subdomains are connected through the open-source coupling library preCICE [3]. The results, taken from simulations carried out by the authors, show good agreement with the data available in the literature.