Digital Fingerprinting on Multimedia: A Survey

Wendi Chen, Wensheng Gan, Philip S. Yu
{"title":"Digital Fingerprinting on Multimedia: A Survey","authors":"Wendi Chen, Wensheng Gan, Philip S. Yu","doi":"arxiv-2408.14155","DOIUrl":null,"url":null,"abstract":"The explosive growth of multimedia content in the digital economy era has\nbrought challenges in content recognition, copyright protection, and data\nmanagement. As an emerging content management technology, perceptual hash-based\ndigital fingerprints, serving as compact summaries of multimedia content, have\nbeen widely adopted for efficient multimedia content identification and\nretrieval across different modalities (e.g., text, image, video, audio),\nattracting significant attention from both academia and industry. Despite the\nincreasing applications of digital fingerprints, there is a lack of systematic\nand comprehensive literature review on multimedia digital fingerprints. This\nsurvey aims to fill this gap and provide an important resource for researchers\nstudying the details and related advancements of multimedia digital\nfingerprints. The survey first introduces the definition, characteristics, and\nrelated concepts (including hash functions, granularity, similarity measures,\netc.) of digital fingerprints. It then focuses on analyzing and summarizing the\nalgorithms for extracting unimodal fingerprints of different types of digital\ncontent, including text fingerprints, image fingerprints, video fingerprints,\nand audio fingerprints. Particularly, it provides an in-depth review and\nsummary of deep learning-based fingerprints. Additionally, the survey\nelaborates on the various practical applications of digital fingerprints and\noutlines the challenges and potential future research directions. The goal is\nto promote the continued development of multimedia digital fingerprint\nresearch.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The explosive growth of multimedia content in the digital economy era has brought challenges in content recognition, copyright protection, and data management. As an emerging content management technology, perceptual hash-based digital fingerprints, serving as compact summaries of multimedia content, have been widely adopted for efficient multimedia content identification and retrieval across different modalities (e.g., text, image, video, audio), attracting significant attention from both academia and industry. Despite the increasing applications of digital fingerprints, there is a lack of systematic and comprehensive literature review on multimedia digital fingerprints. This survey aims to fill this gap and provide an important resource for researchers studying the details and related advancements of multimedia digital fingerprints. The survey first introduces the definition, characteristics, and related concepts (including hash functions, granularity, similarity measures, etc.) of digital fingerprints. It then focuses on analyzing and summarizing the algorithms for extracting unimodal fingerprints of different types of digital content, including text fingerprints, image fingerprints, video fingerprints, and audio fingerprints. Particularly, it provides an in-depth review and summary of deep learning-based fingerprints. Additionally, the survey elaborates on the various practical applications of digital fingerprints and outlines the challenges and potential future research directions. The goal is to promote the continued development of multimedia digital fingerprint research.
多媒体数字指纹:调查
数字经济时代多媒体内容的爆炸式增长给内容识别、版权保护和数据管理带来了挑战。作为一种新兴的内容管理技术,基于感知哈希的数字指纹作为多媒体内容的紧凑摘要,已被广泛应用于不同模式(如文本、图像、视频、音频)的高效多媒体内容识别和检索,引起了学术界和产业界的极大关注。尽管数字指纹的应用日益广泛,但目前还缺乏关于多媒体数字指纹的系统而全面的文献综述。本调查旨在填补这一空白,为研究多媒体数字指纹的细节和相关进展的研究人员提供重要资源。调查首先介绍了数字指纹的定义、特征和相关概念(包括哈希函数、粒度、相似性度量等)。然后重点分析和总结了提取不同类型数字内容(包括文本指纹、图像指纹、视频指纹和音频指纹)的单模态指纹的算法。特别是对基于深度学习的指纹进行了深入评述和总结。此外,调查报告还阐述了数字指纹的各种实际应用,并概述了面临的挑战和潜在的未来研究方向。目标是促进多媒体数字指纹研究的持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信