PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy

Xianzhi Zhang, Yipeng Zhou, Di Wu, Quan Z. Sheng, Miao Hu, Linchang Xiao
{"title":"PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy","authors":"Xianzhi Zhang, Yipeng Zhou, Di Wu, Quan Z. Sheng, Miao Hu, Linchang Xiao","doi":"arxiv-2408.14735","DOIUrl":null,"url":null,"abstract":"Online video streaming has evolved into an integral component of the\ncontemporary Internet landscape. Yet, the disclosure of user requests presents\nformidable privacy challenges. As users stream their preferred online videos,\ntheir requests are automatically seized by video content providers, potentially\nleaking users' privacy. Unfortunately, current protection methods are not well-suited to preserving\nuser request privacy from content providers while maintaining high-quality\nonline video services. To tackle this challenge, we introduce a novel\nPrivacy-Preserving Video Fetching (PPVF) framework, which utilizes trusted edge\ndevices to pre-fetch and cache videos, ensuring the privacy of users' requests\nwhile optimizing the efficiency of edge caching. More specifically, we design\nPPVF with three core components: (1) \\textit{Online privacy budget scheduler},\nwhich employs a theoretically guaranteed online algorithm to select\nnon-requested videos as candidates with assigned privacy budgets. Alternative\nvideos are chosen by an online algorithm that is theoretically guaranteed to\nconsider both video utilities and available privacy budgets. (2) \\textit{Noisy\nvideo request generator}, which generates redundant video requests (in addition\nto original ones) utilizing correlated differential privacy to obfuscate\nrequest privacy. (3) \\textit{Online video utility predictor}, which leverages\nfederated learning to collaboratively evaluate video utility in an online\nfashion, aiding in video selection in (1) and noise generation in (2). Finally,\nwe conduct extensive experiments using real-world video request traces from\nTencent Video. The results demonstrate that PPVF effectively safeguards user\nrequest privacy while upholding high video caching performance.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online video streaming has evolved into an integral component of the contemporary Internet landscape. Yet, the disclosure of user requests presents formidable privacy challenges. As users stream their preferred online videos, their requests are automatically seized by video content providers, potentially leaking users' privacy. Unfortunately, current protection methods are not well-suited to preserving user request privacy from content providers while maintaining high-quality online video services. To tackle this challenge, we introduce a novel Privacy-Preserving Video Fetching (PPVF) framework, which utilizes trusted edge devices to pre-fetch and cache videos, ensuring the privacy of users' requests while optimizing the efficiency of edge caching. More specifically, we design PPVF with three core components: (1) \textit{Online privacy budget scheduler}, which employs a theoretically guaranteed online algorithm to select non-requested videos as candidates with assigned privacy budgets. Alternative videos are chosen by an online algorithm that is theoretically guaranteed to consider both video utilities and available privacy budgets. (2) \textit{Noisy video request generator}, which generates redundant video requests (in addition to original ones) utilizing correlated differential privacy to obfuscate request privacy. (3) \textit{Online video utility predictor}, which leverages federated learning to collaboratively evaluate video utility in an online fashion, aiding in video selection in (1) and noise generation in (2). Finally, we conduct extensive experiments using real-world video request traces from Tencent Video. The results demonstrate that PPVF effectively safeguards user request privacy while upholding high video caching performance.
PPVF:具有相关差异隐私的高效隐私保护在线视频获取框架
在线视频流已经发展成为当代互联网不可或缺的组成部分。然而,用户请求的披露带来了棘手的隐私挑战。当用户流式传输他们喜欢的在线视频时,他们的请求会被视频内容提供商自动获取,从而可能泄露用户的隐私。遗憾的是,目前的保护方法无法在保持高质量在线视频服务的同时,从内容提供商处保护用户请求隐私。为了应对这一挑战,我们推出了一种新颖的隐私保护视频获取(PPVF)框架,它利用可信边缘设备预先获取和缓存视频,在优化边缘缓存效率的同时确保用户请求的隐私性。更具体地说,我们设计的 PPVF 有三个核心组件:(1) \textit{在线隐私预算调度器},它采用理论上有保证的在线算法来选择非请求视频作为分配隐私预算的候选视频。替代视频由在线算法选择,该算法在理论上保证同时考虑视频效用和可用隐私预算。(2)textit{噪声视频请求生成器},利用相关差分隐私来混淆请求隐私,从而生成冗余视频请求(除原始请求外)。(3) \textit{在线视频效用预测器},它利用联合学习以在线方式协作评估视频效用,帮助(1)中的视频选择和(2)中的噪声生成。最后,我们使用腾讯视频的真实视频请求跟踪进行了大量实验。结果表明,PPVF 能有效保护用户请求隐私,同时保持较高的视频缓存性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信