A classification of $n$-representation infinite algebras of type Ã

Darius Dramburg, Oleksandra Gasanova
{"title":"A classification of $n$-representation infinite algebras of type Ã","authors":"Darius Dramburg, Oleksandra Gasanova","doi":"arxiv-2409.06553","DOIUrl":null,"url":null,"abstract":"We classify $n$-representation infinite algebras $\\Lambda$ of type \\~A. This\ntype is defined by requiring that $\\Lambda$ has higher preprojective algebra\n$\\Pi_{n+1}(\\Lambda) \\simeq k[x_1, \\ldots, x_{n+1}] \\ast G$, where $G \\leq\n\\operatorname{SL}_{n+1}(k)$ is finite abelian. For the classification, we group\nthese algebras according to a more refined type, and give a combinatorial\ncharacterisation of these types. This is based on so-called height functions,\nwhich generalise the height function of a perfect matching in a Dimer model. In\nterms of toric geometry and McKay correspondence, the types form a lattice\nsimplex of junior elements of $G$. We show that all algebras of the same type\nare related by iterated $n$-APR tilting, and hence are derived equivalent. By\ndisallowing certain tilts, we turn this set into a finite distributive lattice,\nand we construct its maximal and minimal elements.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We classify $n$-representation infinite algebras $\Lambda$ of type \~A. This type is defined by requiring that $\Lambda$ has higher preprojective algebra $\Pi_{n+1}(\Lambda) \simeq k[x_1, \ldots, x_{n+1}] \ast G$, where $G \leq \operatorname{SL}_{n+1}(k)$ is finite abelian. For the classification, we group these algebras according to a more refined type, and give a combinatorial characterisation of these types. This is based on so-called height functions, which generalise the height function of a perfect matching in a Dimer model. In terms of toric geometry and McKay correspondence, the types form a lattice simplex of junior elements of $G$. We show that all algebras of the same type are related by iterated $n$-APR tilting, and hence are derived equivalent. By disallowing certain tilts, we turn this set into a finite distributive lattice, and we construct its maximal and minimal elements.
$n$表示型无限代数的分类
我们对 \~A 类型的 $n$ 代表无限代数 $\Lambda$ 进行了分类。这种类型的定义是要求 $\Lambda$ 有更高的前投影代数 $Pi_{n+1}(\Lambda) \simeq k[x_1, \ldots, x_{n+1}] \ast G$,其中 $G \leq\operatorname{SL}_{n+1}(k)$ 是有限无性的。为了进行分类,我们按照更精细的类型对这些数组进行分组,并给出了这些类型的组合特征。这基于所谓的高度函数,它概括了二聚模型中完美匹配的高度函数。在环几何和麦凯对应关系方面,这些类型构成了 $G$ 初级元素的格状复数。我们证明了同一类型的所有数组都是通过迭代 $n$-APR 倾斜相关的,因此它们的推导是等价的。通过不允许某些倾斜,我们把这个集合变成了有限分布网格,并构造了它的最大元素和最小元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信