Hilbert schemes for crepant partial resolutions

Alastair Craw, Ruth Pugh
{"title":"Hilbert schemes for crepant partial resolutions","authors":"Alastair Craw, Ruth Pugh","doi":"arxiv-2409.07408","DOIUrl":null,"url":null,"abstract":"For $n\\geq 1$, we construct the Hilbert scheme of $n$ points on any crepant\npartial resolution of a Kleinian singularity as a Nakajima quiver variety for\nan explicit GIT stability parameter. We provide both a short proof involving a\ncombinatorial argument, in which the isomorphism is implicit, and a more\nsatisfying geometric proof where the isomorphic is constructed explicitly. As a\ncorollary, we compute the nef and movable cones of the Hilbert scheme of $n$\npoints on any crepant partial resolution of a Kleinian singularity in terms of\nthe summands of a tilting bundle on the surface.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"164 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For $n\geq 1$, we construct the Hilbert scheme of $n$ points on any crepant partial resolution of a Kleinian singularity as a Nakajima quiver variety for an explicit GIT stability parameter. We provide both a short proof involving a combinatorial argument, in which the isomorphism is implicit, and a more satisfying geometric proof where the isomorphic is constructed explicitly. As a corollary, we compute the nef and movable cones of the Hilbert scheme of $n$ points on any crepant partial resolution of a Kleinian singularity in terms of the summands of a tilting bundle on the surface.
褶皱部分决议的希尔伯特方案
对于 $n(geq 1$),我们将克莱因奇点的任何crepantial决议上的 $n$ 点的希尔伯特方案构造为一个明确的 GIT 稳定参数的中岛四分频变。我们提供了涉及组合论证的简短证明(其中同构是隐含的)和更令人满意的几何证明(其中同构是明确构造的)。作为必然结果,我们用曲面上倾斜束的和来计算克莱因奇点的任何绉褶部分解析上 $n$ 点的希尔伯特方案的新锥和可动锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信