Linear Reedy categories, quasi-hereditary algebras and model structures

Georgios Dalezios, Jan Stovicek
{"title":"Linear Reedy categories, quasi-hereditary algebras and model structures","authors":"Georgios Dalezios, Jan Stovicek","doi":"arxiv-2409.06823","DOIUrl":null,"url":null,"abstract":"We study linear versions of Reedy categories in relation with finite\ndimensional algebras and abelian model structures. We prove that, for a linear\nReedy category $\\mathcal{C}$ over a field, the category of left\n$\\mathcal{C}$--modules admits a highest weight structure, which in case\n$\\mathcal{C}$ is finite corresponds to a quasi-hereditary algebra with an exact\nBorel subalgebra. We also lift complete cotorsion pairs and abelian model\nstructures to certain categories of additive functors indexed by linear Reedy\ncategories, generalizing analogous results from the hereditary case.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study linear versions of Reedy categories in relation with finite dimensional algebras and abelian model structures. We prove that, for a linear Reedy category $\mathcal{C}$ over a field, the category of left $\mathcal{C}$--modules admits a highest weight structure, which in case $\mathcal{C}$ is finite corresponds to a quasi-hereditary algebra with an exact Borel subalgebra. We also lift complete cotorsion pairs and abelian model structures to certain categories of additive functors indexed by linear Reedy categories, generalizing analogous results from the hereditary case.
线性里迪范畴、准遗传代数和模型结构
我们研究线性里迪范畴与有限维代数和无边模型结构的关系。我们证明,对于一个域上的线性里迪范畴$\mathcal{C}$来说,左$\mathcal{C}$-模块范畴有一个最高权重结构,在$\mathcal{C}$是有限的情况下,它对应于一个具有精确伯勒子代数的准遗传代数。我们还把完整的扭转对和非比利亚模型结构提升到由线性里德分类(linear Reedycategories)索引的加法函数的某些类别,推广了遗传情况下的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信