Shift system and its applications

Hao Liwith an appendix by Myungbo Shim, Shoma Sugimotowith an appendix by Myungbo Shim
{"title":"Shift system and its applications","authors":"Hao Liwith an appendix by Myungbo Shim, Shoma Sugimotowith an appendix by Myungbo Shim","doi":"arxiv-2409.07381","DOIUrl":null,"url":null,"abstract":"We introduce a new concept named shift system. This is a purely Lie algebraic\nsetting to develop the geometric representation theory of Feigin-Tipunin\nconstruction. After reformulating the discussion in past works of the second\nauthor under this new setting, as an application, we extend almost all the main\nresults of these works to the (multiplet) principal W-algebra at positive\ninteger level associated with a simple Lie algebra $\\mathfrak{g}$ and Lie\nsuperalgebra $\\mathfrak{osp}(1|2n)$, respectively. This paper also contains an\nappendix by Myungbo Shim on the relationship between Feigin-Tipunin\nconstruction and recent quantum field theories.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new concept named shift system. This is a purely Lie algebraic setting to develop the geometric representation theory of Feigin-Tipunin construction. After reformulating the discussion in past works of the second author under this new setting, as an application, we extend almost all the main results of these works to the (multiplet) principal W-algebra at positive integer level associated with a simple Lie algebra $\mathfrak{g}$ and Lie superalgebra $\mathfrak{osp}(1|2n)$, respectively. This paper also contains an appendix by Myungbo Shim on the relationship between Feigin-Tipunin construction and recent quantum field theories.
移位系统及其应用
我们引入了一个名为移位系统的新概念。这是发展费金-提普宁构造的几何表示理论的一个纯粹的李代数学设定。在这个新环境下重新阐述了第二作者过去著作中的讨论之后,作为一个应用,我们把这些著作的几乎所有主要结果扩展到了正整数级的(多重)主 W-代数,分别与简单的李代数 $\mathfrak{g}$ 和李代数 $\mathfrak{osp}(1|2n)$ 相关联。本文还包含沈明博关于费金-提普宁构造与最新量子场论之间关系的附录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信