The skew immaculate Hecke poset and 0-Hecke modules

Nadia Lafrenière, Rosa Orellana, Anna Pun, Sheila Sundaram, Stephanie van Willigenburg, Tamsen Whitehead McGinley
{"title":"The skew immaculate Hecke poset and 0-Hecke modules","authors":"Nadia Lafrenière, Rosa Orellana, Anna Pun, Sheila Sundaram, Stephanie van Willigenburg, Tamsen Whitehead McGinley","doi":"arxiv-2409.00709","DOIUrl":null,"url":null,"abstract":"The immaculate Hecke poset was introduced and investigated by Niese,\nSundaram, van Willigenburg, Vega and Wang, who established the full poset\nstructure, and determined modules for the 0-Hecke algebra action on immaculate\nand row-strict immaculate tableaux. In this paper, we extend their results by introducing the skew immaculate\nHecke poset. We investigate the poset structure, and construct modules for the\n0-Hecke algebra action on skew immaculate and skew row-strict immaculate\ntableaux, thus showing that the skew immaculate Hecke poset captures\nrepresentation-theoretic information analogous to the immaculate Hecke poset.\nWe also describe branching rules for the resulting skew modules.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The immaculate Hecke poset was introduced and investigated by Niese, Sundaram, van Willigenburg, Vega and Wang, who established the full poset structure, and determined modules for the 0-Hecke algebra action on immaculate and row-strict immaculate tableaux. In this paper, we extend their results by introducing the skew immaculate Hecke poset. We investigate the poset structure, and construct modules for the 0-Hecke algebra action on skew immaculate and skew row-strict immaculate tableaux, thus showing that the skew immaculate Hecke poset captures representation-theoretic information analogous to the immaculate Hecke poset. We also describe branching rules for the resulting skew modules.
斜无暇赫克正集和 0 赫克模块
Niese、Sundaram、van Willigenburg、Vega 和 Wang 介绍并研究了无暇赫克正集,他们建立了完整的正集结构,并确定了 0 赫克代数作用于无暇和行严格无暇表元的模块。在本文中,我们通过引入斜无暇赫克正集扩展了他们的成果。我们研究了正集结构,并构建了0-Hecke代数作用于斜无暇和斜行-严格无暇表元的模块,从而证明斜无暇Hecke正集捕获了类似于无暇Hecke正集的表述理论信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信