Metric completions of triangulated categories from finite dimensional algebras

Cyril Matoušek
{"title":"Metric completions of triangulated categories from finite dimensional algebras","authors":"Cyril Matoušek","doi":"arxiv-2409.01828","DOIUrl":null,"url":null,"abstract":"In this paper, we study metric completions of triangulated categories in a\nrepresentation-theoretic context. We provide a concrete description of\ncompletions of bounded derived categories of hereditary finite dimensional\nalgebras of finite representation type. In order to investigate completions of\nbounded derived categories of algebras of finite global dimension, we define\nimage and preimage metrics under a triangulated functor and use them to induce\na triangulated equivalence between two completions. Furthermore, for a given\nmetric on a triangulated category we construct a new, closely related good\nmetric called the improvement and compare the respective completions.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study metric completions of triangulated categories in a representation-theoretic context. We provide a concrete description of completions of bounded derived categories of hereditary finite dimensional algebras of finite representation type. In order to investigate completions of bounded derived categories of algebras of finite global dimension, we define image and preimage metrics under a triangulated functor and use them to induce a triangulated equivalence between two completions. Furthermore, for a given metric on a triangulated category we construct a new, closely related good metric called the improvement and compare the respective completions.
来自有限维代数的三角范畴的公设补全
本文从表征理论的角度研究三角范畴的度量补全。我们具体描述了有限表征类型的遗传有限维代数的有界派生范畴的完备性。为了研究有限全维代数的有界派生范畴的完备性,我们定义了三角函数下的像和前像度量,并用它们来诱导两个完备性之间的三角等价。此外,对于三角化范畴上的给定度量,我们构建了一个新的、密切相关的好度量,称为改进度量,并比较了各自的完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信