Geometric realizations of representations for $\text{PSL}(2, \mathbb{F}_p)$ and Galois representations arising from defining ideals of modular curves

Lei Yang
{"title":"Geometric realizations of representations for $\\text{PSL}(2, \\mathbb{F}_p)$ and Galois representations arising from defining ideals of modular curves","authors":"Lei Yang","doi":"arxiv-2409.02589","DOIUrl":null,"url":null,"abstract":"We construct a geometric realization of representations for $\\text{PSL}(2,\n\\mathbb{F}_p)$ by the defining ideals of rational models $\\mathcal{L}(X(p))$ of\nmodular curves $X(p)$ over $\\mathbb{Q}$. Hence, for the irreducible\nrepresentations of $\\text{PSL}(2, \\mathbb{F}_p)$, whose geometric realizations\ncan be formulated in three different scenarios in the framework of Weil's\nRosetta stone: number fields, curves over $\\mathbb{F}_q$ and Riemann surfaces.\nIn particular, we show that there exists a correspondence among the defining\nideals of modular curves over $\\mathbb{Q}$, reducible\n$\\mathbb{Q}(\\zeta_p)$-rational representations $\\pi_p: \\text{PSL}(2,\n\\mathbb{F}_p) \\rightarrow \\text{Aut}(\\mathcal{L}(X(p)))$ of $\\text{PSL}(2,\n\\mathbb{F}_p)$, and $\\mathbb{Q}(\\zeta_p)$-rational Galois representations\n$\\rho_p: \\text{Gal}(\\overline{\\mathbb{Q}}/\\mathbb{Q}) \\rightarrow\n\\text{Aut}(\\mathcal{L}(X(p)))$ as well as their modular and surjective\nrealization. This leads to a new viewpoint on the last mathematical testament\nof Galois by Galois representations arising from the defining ideals of modular\ncurves, which leads to a connection with Klein's elliptic modular functions. It\nis a nonlinear and anabelian counterpart of the global Langlands correspondence\namong the $\\ell$-adic \\'{e}tale cohomology of modular curves over $\\mathbb{Q}$,\ni.e., Grothendieck motives ($\\ell$-adic system), automorphic representations of\n$\\text{GL}(2, \\mathbb{Q})$ and $\\ell$-adic representations.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a geometric realization of representations for $\text{PSL}(2, \mathbb{F}_p)$ by the defining ideals of rational models $\mathcal{L}(X(p))$ of modular curves $X(p)$ over $\mathbb{Q}$. Hence, for the irreducible representations of $\text{PSL}(2, \mathbb{F}_p)$, whose geometric realizations can be formulated in three different scenarios in the framework of Weil's Rosetta stone: number fields, curves over $\mathbb{F}_q$ and Riemann surfaces. In particular, we show that there exists a correspondence among the defining ideals of modular curves over $\mathbb{Q}$, reducible $\mathbb{Q}(\zeta_p)$-rational representations $\pi_p: \text{PSL}(2, \mathbb{F}_p) \rightarrow \text{Aut}(\mathcal{L}(X(p)))$ of $\text{PSL}(2, \mathbb{F}_p)$, and $\mathbb{Q}(\zeta_p)$-rational Galois representations $\rho_p: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(\mathcal{L}(X(p)))$ as well as their modular and surjective realization. This leads to a new viewpoint on the last mathematical testament of Galois by Galois representations arising from the defining ideals of modular curves, which leads to a connection with Klein's elliptic modular functions. It is a nonlinear and anabelian counterpart of the global Langlands correspondence among the $\ell$-adic \'{e}tale cohomology of modular curves over $\mathbb{Q}$, i.e., Grothendieck motives ($\ell$-adic system), automorphic representations of $\text{GL}(2, \mathbb{Q})$ and $\ell$-adic representations.
$text{PSL}(2, \mathbb{F}_p)$和由模态曲线定义理想产生的伽罗瓦表示的几何实现
我们通过在 $\mathbb{Q}$ 上的模态曲线 $X(p)$ 的有理模型 $\mathcal{L}(X(p))$ 的定义域,为 $\text{PSL}(2,\mathbb{F}_p)$ 构建了表示的几何实现。因此,对于$\text{PSL}(2, \mathbb{F}_p)$的不可重复性表示,其几何实现可以在魏尔的罗塞塔石的框架下在三种不同的情况下被表述:数域、$\mathbb{F}_q$上的曲线和黎曼曲面。特别是,我们证明了在 $\mathbb{Q}$ 上的模态曲线的定义域、可还原的 $\mathbb{Q}(\zeta_p)$ 理性表示 $\pi_p:\text{PSL}(2,\mathbb{F}_p) \rightarrow \text{Aut}(\mathcal{L}(X(p)))$ of $\text{PSL}(2,\mathbb{F}_p)$, 以及 $\mathbb{Q}(\zeta_p)$ 有理伽罗瓦表示$\rrh_p:\text{Gal}(overline{mathbb{Q}}/\mathbb{Q}) \rightarrow\text{Aut}(\mathcal{L}(X(p)))$ 以及它们的模化和射影化。这导致了一种新的观点,即由模态曲线的定义理想所产生的伽罗瓦表示是伽罗瓦最后的数学证明,从而与克莱因的椭圆模态函数联系起来。它是$\mathbb{Q}$上模数曲线的$\ell$-adic \'{e}tale同调,即格罗内迪克动机($\ell$-adic系统)、$\text{GL}(2, \mathbb{Q})$的自变量表示和$\ell$-adic表示之间的全局朗兰兹对应的非线性和无标注对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信