Mixed Tensor Products, Capelli Berezinians, and Newton's Formula for $\mathfrak{gl}(m|n)$

Sidarth Erat, Arun S. Kannan, Shihan Kanungo
{"title":"Mixed Tensor Products, Capelli Berezinians, and Newton's Formula for $\\mathfrak{gl}(m|n)$","authors":"Sidarth Erat, Arun S. Kannan, Shihan Kanungo","doi":"arxiv-2409.02422","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the results of Grantcharov and Robitaille in 2021 on\nmixed tensor products and Capelli determinants to the superalgebra setting.\nSpecifically, we construct a family of superalgebra homomorphisms $\\varphi_R :\nU(\\mathfrak{gl}(m+1|n)) \\rightarrow \\mathcal{D}'(m|n) \\otimes\nU(\\mathfrak{gl}(m|n))$ for a certain space of differential operators\n$\\mathcal{D}'(m|n)$ indexed by a central element $R$ of $\\mathcal{D}'(m|n)\n\\otimes U(\\mathfrak{gl}(m|n))$. We then use this homomorphism to determine the\nimage of Gelfand generators of the center of $U(\\mathfrak{gl}(m+1|n))$. We\nachieve this by first relating $\\varphi_R$ to the corresponding Harish-Chandra\nhomomorphisms and then proving a super-analog of Newton's formula for\n$\\mathfrak{gl}(m)$ relating Capelli generators and Gelfand generators. We also\nuse the homomorphism $\\varphi_R$ to obtain representations of\n$U(\\mathfrak{gl}(m+1|n))$ from those of $U(\\mathfrak{gl}(m|n))$, and find\nconditions under which these inflations are simple. Finally, we show that for a\ndistinguished central element $R_1$ in $\\mathcal{D}'(m|n)\\otimes\nU(\\mathfrak{gl}(m|n))$, the kernel of $\\varphi_{R_1}$ is the ideal of\n$U(\\mathfrak{gl}(m+1|n))$ generated by the first Gelfand invariant $G_1$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the results of Grantcharov and Robitaille in 2021 on mixed tensor products and Capelli determinants to the superalgebra setting. Specifically, we construct a family of superalgebra homomorphisms $\varphi_R : U(\mathfrak{gl}(m+1|n)) \rightarrow \mathcal{D}'(m|n) \otimes U(\mathfrak{gl}(m|n))$ for a certain space of differential operators $\mathcal{D}'(m|n)$ indexed by a central element $R$ of $\mathcal{D}'(m|n) \otimes U(\mathfrak{gl}(m|n))$. We then use this homomorphism to determine the image of Gelfand generators of the center of $U(\mathfrak{gl}(m+1|n))$. We achieve this by first relating $\varphi_R$ to the corresponding Harish-Chandra homomorphisms and then proving a super-analog of Newton's formula for $\mathfrak{gl}(m)$ relating Capelli generators and Gelfand generators. We also use the homomorphism $\varphi_R$ to obtain representations of $U(\mathfrak{gl}(m+1|n))$ from those of $U(\mathfrak{gl}(m|n))$, and find conditions under which these inflations are simple. Finally, we show that for a distinguished central element $R_1$ in $\mathcal{D}'(m|n)\otimes U(\mathfrak{gl}(m|n))$, the kernel of $\varphi_{R_1}$ is the ideal of $U(\mathfrak{gl}(m+1|n))$ generated by the first Gelfand invariant $G_1$.
混合张量乘积、卡佩里贝雷津尼和 $\mathfrak{gl}(m|n)$ 的牛顿公式
在本文中,我们将格兰特查洛夫和罗比泰勒在 2021 年关于混合张量乘和卡佩利行列式的研究成果扩展到超代数环境中。具体来说,我们为某个微分空间构建了一个超代数同构系 $\varphi_R :U(\mathfrak{gl}(m+1|n))\对于由 $\mathcal{D}'(m|n)\otimes U(\mathfrak{gl}(m|n))$的中心元素 $R$ 索引的某个微分算子空间 $/mathcal{D}'(m|n)$。然后,我们利用这个同构来确定 $U(\mathfrak{gl}(m+1|n))$ 的中心的格尔芬根的映像。我们首先将 $\varphi_R$ 与相应的哈里什-昌德拉同态联系起来,然后证明了牛顿公式中关于 $\mathfrak{gl}(m)$ 的卡佩利生成子与格尔范生成子的超类比。我们还利用同态 $\varphi_R$ 从 $U(\mathfrak{gl}(m|n))$的表征中得到 $U(\mathfrak{gl}(m+1|n))$的表征,并找到这些膨胀是简单的条件。最后,我们证明,对于 $\mathcal{D}'(m|n)\otimesU(\mathfrak{gl}(m|n))$ 中的独立中心元 $R_1$,$\varphi_{R_1}$ 的核是由第一个格尔方不变量 $G_1$ 生成的$U(\mathfrak{gl}(m+1|n))$ 的理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信