On constructing zeta elements for Shimura varieties

Syed Waqar Ali Shah
{"title":"On constructing zeta elements for Shimura varieties","authors":"Syed Waqar Ali Shah","doi":"arxiv-2409.03517","DOIUrl":null,"url":null,"abstract":"We present a novel axiomatic framework for establishing horizontal norm\nrelations in Euler systems that are built from pushforwards of classes in the\nmotivic cohomology of Shimura varieties. This framework is uniformly applicable\nto the Euler systems of both algebraic cycles and Eisenstein classes. It also\napplies to non-spherical pairs of groups that fail to satisfy a local\nmultiplicity one hypothesis, and thus lie beyond the reach of existing methods.\nA key application of this work is the construction of an Euler system for the\nspinor Galois representations arising in the cohomology of Siegel modular\nvarieties of genus three, which is undertaken in two companion articles.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel axiomatic framework for establishing horizontal norm relations in Euler systems that are built from pushforwards of classes in the motivic cohomology of Shimura varieties. This framework is uniformly applicable to the Euler systems of both algebraic cycles and Eisenstein classes. It also applies to non-spherical pairs of groups that fail to satisfy a local multiplicity one hypothesis, and thus lie beyond the reach of existing methods. A key application of this work is the construction of an Euler system for the spinor Galois representations arising in the cohomology of Siegel modular varieties of genus three, which is undertaken in two companion articles.
关于构建志村变的zeta元素
我们提出了一个新颖的公理框架,用于建立欧拉系统中的水平规范关系,这些关系是由下村变素的同调中的类的前推建立的。这个框架统一适用于代数周期和爱森斯坦类的欧拉系统。这项工作的一个关键应用是为三属西格尔模块变种同调中出现的旋子伽罗瓦表征构建欧拉系统,这将在两篇配套文章中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信