On groups with at most five irrational conjugacy classes

Gabriel de Arêa Leão Souza
{"title":"On groups with at most five irrational conjugacy classes","authors":"Gabriel de Arêa Leão Souza","doi":"arxiv-2409.03539","DOIUrl":null,"url":null,"abstract":"G. Navarro and P. H. Tiep, among others, have studied groups with few\nrational conjugacy classes or few rational irreducible characters. In this\npaper we look at the opposite extreme. Let $G$ be a finite group. Given a\nconjugacy class $K$ of $G$, we say it is irrational if there is some $\\chi \\in\n\\operatorname{Irr}(G)$ such that $\\chi(K) \\not \\in \\mathbb{Q}$. One of our main\nresults shows that, when $G$ contains at most $5$ irrational conjugacy classes,\nthen $|\\operatorname{Irr}_{\\mathbb{Q}} (G)| = | \\operatorname{cl}_{\\mathbb{Q}}\n(G)|$. This suggests some duality with the known results and open questions on\ngroups with few rational irreducible characters.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

G. Navarro and P. H. Tiep, among others, have studied groups with few rational conjugacy classes or few rational irreducible characters. In this paper we look at the opposite extreme. Let $G$ be a finite group. Given a conjugacy class $K$ of $G$, we say it is irrational if there is some $\chi \in \operatorname{Irr}(G)$ such that $\chi(K) \not \in \mathbb{Q}$. One of our main results shows that, when $G$ contains at most $5$ irrational conjugacy classes, then $|\operatorname{Irr}_{\mathbb{Q}} (G)| = | \operatorname{cl}_{\mathbb{Q}} (G)|$. This suggests some duality with the known results and open questions on groups with few rational irreducible characters.
关于最多有五个无理共轭类的群
G. Navarro 和 P. H. Tiep 等人研究了具有少数有理共轭类或少数有理不可还原符的群。在本文中,我们将研究相反的极端。假设 $G$ 是一个有限群。给定 $G$ 的共轭类 $K$,如果存在某个 $chi \inoperatorname{Irr}(G)$ 使得 $\chi(K) \not \in \mathbb{Q}$ ,我们就说它是无理的。我们的一个主要结果表明,当 $G$ 包含最多 5$ 个无理共轭类时,$|\operatorname{Irr}_{mathbb{Q}}.(G)| = | operatorname{cl}_{\mathbb{Q}}(G)|$.这表明,在具有少量有理不可还原字符的群上,已知的结果和悬而未决的问题具有一定的对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信