On Hecke algebras and $Z$-graded twisting, Shuffling and Zuckerman functors

Ming Fang, Jun Hu, Yujiao Sun
{"title":"On Hecke algebras and $Z$-graded twisting, Shuffling and Zuckerman functors","authors":"Ming Fang, Jun Hu, Yujiao Sun","doi":"arxiv-2409.03379","DOIUrl":null,"url":null,"abstract":"Let $g$ be a complex semisimple Lie algebra with Weyl group $W$. Let $H(W)$\nbe the Iwahori-Hecke algebra associated to $W$. For each $w\\in W$, let $T_w$\nand $C_w$ be the corresponding $Z$-graded twisting functor and $Z$-graded\nshuffling functor respectively. In this paper we present a categorical action\nof $H(W)$ on the derived category $D^b(O_0^Z)$ of the $Z$-graded BGG category\n$O_0^Z$ via derived twisting functors as well as a categorical action of $H(W)$\non $D^b(O_0^Z)$ via derived shuffling functors. As applications, we get graded\ncharacter formulae for $T_sL(x)$ and $C_sL(x)$ for each simple reflection $s$.\nWe describe the graded shifts occurring in the action of the $Z$-graded\ntwisting and shuffling functors on dual Verma modules and simple modules. We\nalso characterize the action of the derived $Z$-graded Zuckerman functors on\nsimple modules.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $g$ be a complex semisimple Lie algebra with Weyl group $W$. Let $H(W)$ be the Iwahori-Hecke algebra associated to $W$. For each $w\in W$, let $T_w$ and $C_w$ be the corresponding $Z$-graded twisting functor and $Z$-graded shuffling functor respectively. In this paper we present a categorical action of $H(W)$ on the derived category $D^b(O_0^Z)$ of the $Z$-graded BGG category $O_0^Z$ via derived twisting functors as well as a categorical action of $H(W)$ on $D^b(O_0^Z)$ via derived shuffling functors. As applications, we get graded character formulae for $T_sL(x)$ and $C_sL(x)$ for each simple reflection $s$. We describe the graded shifts occurring in the action of the $Z$-graded twisting and shuffling functors on dual Verma modules and simple modules. We also characterize the action of the derived $Z$-graded Zuckerman functors on simple modules.
论赫克代数和 $Z$ 级扭转、舒夫林和祖克曼函数
让 $g$ 是具有韦尔群 $W$ 的复半简单李代数。让 $H(W)$ 成为与 $W$ 相关联的岩崛赫克代数。对于 W$ 中的每一个 $w/$,让 $T_w$ 和 $C_w$ 分别成为相应的 $Z$ 等级扭转函子和 $Z$ 等级洗牌函子。在本文中,我们介绍了 $H(W)$ 通过派生扭曲函子对 $Z$-graded BGG category$O_0^Z$ 的派生范畴 $D^b(O_0^Z)$ 的分类作用,以及 $H(W)$ 通过派生洗牌函子对 $D^b(O_0^Z)$ 的分类作用。作为应用,我们得到了每个简单映象 $s$ 的 $T_sL(x)$ 和 $C_sL(x)$ 的级数公式。我们描述了 $Z$ 级数扭转和洗牌函子作用于对偶维尔马模块和简单模块时发生的级数移动。我们还描述了简单模块上派生的$Z$等级祖克曼函子作用的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信