Generic bases of skew-symmetrizable affine type cluster algebras

Lang Mou, Xiuping Su
{"title":"Generic bases of skew-symmetrizable affine type cluster algebras","authors":"Lang Mou, Xiuping Su","doi":"arxiv-2409.03954","DOIUrl":null,"url":null,"abstract":"Geiss, Leclerc and Schr\\\"oer introduced a class of 1-Iwanaga-Gorenstein\nalgebras $H$ associated to symmetrizable Cartan matrices with acyclic\norientations, generalizing the path algebras of acyclic quivers. They also\nproved that indecomposable rigid $H$-modules of finite projective dimension are\nin bijection with non-initial cluster variables of the corresponding\nFomin-Zelevinsky cluster algebra. In this article, we prove in all affine types\nthat their conjectural Caldero-Chapoton type formula on these modules coincide\nwith the Laurent expression of cluster variables. By taking generic\nCaldero-Chapoton functions on varieties of modules of finite projective\ndimension, we obtain bases for affine type cluster algebras with full-rank\ncoefficients containing all cluster monomials.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geiss, Leclerc and Schr\"oer introduced a class of 1-Iwanaga-Gorenstein algebras $H$ associated to symmetrizable Cartan matrices with acyclic orientations, generalizing the path algebras of acyclic quivers. They also proved that indecomposable rigid $H$-modules of finite projective dimension are in bijection with non-initial cluster variables of the corresponding Fomin-Zelevinsky cluster algebra. In this article, we prove in all affine types that their conjectural Caldero-Chapoton type formula on these modules coincide with the Laurent expression of cluster variables. By taking generic Caldero-Chapoton functions on varieties of modules of finite projective dimension, we obtain bases for affine type cluster algebras with full-rank coefficients containing all cluster monomials.
可 skew-symmetrizable 仿射型簇代数的泛基
Geiss、Leclerc 和 Schr\"oer 介绍了一类与具有非循环定向的可对称 Cartan 矩阵相关联的 1-岩永-戈伦-斯蒂纳尔后代数 $H$,概括了非循环四元组的路径后代数。他们还证明了有限投影维数的不可分解刚性 $H$ 模块与相应的福明-泽列文斯基簇代数的非初始簇变量是双射的。在本文中,我们证明在所有仿射类型中,他们关于这些模块的猜想卡尔德罗-夏波顿类型公式与簇变量的劳伦特表达式重合。通过在有限投影维数的模块 varieties 上取泛型卡尔德罗-夏波顿函数,我们得到了仿射型簇代数的基,其全秩系数包含所有簇单项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信