Categorifying Quiver Linking/Unlinking using CoHA Modules

Okke van Garderen
{"title":"Categorifying Quiver Linking/Unlinking using CoHA Modules","authors":"Okke van Garderen","doi":"arxiv-2409.05605","DOIUrl":null,"url":null,"abstract":"The knots-quivers correspondence is a relation between knot invariants and\nenumerative invariants of quivers, which in particular translates the knot\noperations of linking and unlinking to a certain mutation operation on quivers.\nIn this paper we show that the moduli spaces of a quiver and its\nlinking/unlinking are naturally related, giving a purely representation\ntheoretic interpretation of these operations. We obtain a relation between the\ncohomologies of these spaces which is moreover compatible with a natural action\nof the Cohomological Hall Algebra. The result is a categorification of quiver\nlinking/unlinking at the level of CoHA modules.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The knots-quivers correspondence is a relation between knot invariants and enumerative invariants of quivers, which in particular translates the knot operations of linking and unlinking to a certain mutation operation on quivers. In this paper we show that the moduli spaces of a quiver and its linking/unlinking are naturally related, giving a purely representation theoretic interpretation of these operations. We obtain a relation between the cohomologies of these spaces which is moreover compatible with a natural action of the Cohomological Hall Algebra. The result is a categorification of quiver linking/unlinking at the level of CoHA modules.
使用 CoHA 模块对 Quiver 链接/解链进行分类
在本文中,我们证明了四元组的模空间和它的链接/非链接是天然相关的,并给出了这些操作的纯表征理论解释。我们得到了这些空间的同调关系,而且这种关系与同调霍尔代数的自然作用相容。其结果是在同调霍尔模块的层次上对四元联结/非联结进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信