The action of component groups on irreducible components of Springer fibers

Do Kien Hoang
{"title":"The action of component groups on irreducible components of Springer fibers","authors":"Do Kien Hoang","doi":"arxiv-2409.04076","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple Lie group. Consider a nilpotent element $e\\in\n\\mathfrak{g}$. Let $Z_G(e)$ be the centralizer of $e$ in $G$, and let $A_e:=\nZ_G(e)/Z_G(e)^{o}$ be its component group. Write $\\text{Irr}(\\mathcal{B}_e)$\nfor the set of irreducible components of the Springer fiber $\\mathcal{B}_e$. We\nhave an action of $A_e$ on $\\text{Irr}(\\mathcal{B}_e)$. When $\\mathfrak{g}$ is\nexceptional, we give an explicit description of $\\text{Irr}(\\mathcal{B}_e)$ as\nan $A_e$-set. For $\\mathfrak{g}$ of classical type, we describe the stabilizers\nfor the $A_e$-action. With this description, we prove a conjecture of Lusztig\nand Sommers.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a simple Lie group. Consider a nilpotent element $e\in \mathfrak{g}$. Let $Z_G(e)$ be the centralizer of $e$ in $G$, and let $A_e:= Z_G(e)/Z_G(e)^{o}$ be its component group. Write $\text{Irr}(\mathcal{B}_e)$ for the set of irreducible components of the Springer fiber $\mathcal{B}_e$. We have an action of $A_e$ on $\text{Irr}(\mathcal{B}_e)$. When $\mathfrak{g}$ is exceptional, we give an explicit description of $\text{Irr}(\mathcal{B}_e)$ as an $A_e$-set. For $\mathfrak{g}$ of classical type, we describe the stabilizers for the $A_e$-action. With this description, we prove a conjecture of Lusztig and Sommers.
分量群对斯普林格纤维不可还原分量的作用
让 $G$ 是一个简单的李群。考虑一个零势元素 $e\in\mathfrak{g}$。让 $Z_G(e)$ 是 $e$ 在 $G$ 中的中心子,让 $A_e:=Z_G(e)/Z_G(e)^{o}$ 是它的成分群。写 $\text{Irr}(\mathcal{B}_e)$为斯普林格纤维 $\mathcal{B}_e$ 的不可还原成分集。我们在 $\text{Irr}(\mathcal{B}_e)$ 上有一个 $A_e$ 的作用。当 $\mathfrak{g}$ 是例外时,我们给出了作为 $A_e$ 集合的 $\text{Irr}(\mathcal{B}_e)$ 的明确描述。对于经典类型的 $\mathfrak{g}$ ,我们描述了 $A_e$ 作用的稳定子。通过这一描述,我们证明了卢兹蒂根和索莫斯的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信