Resolutions for Locally Analytic Representations

Shishir Agrawal, Matthias Strauch
{"title":"Resolutions for Locally Analytic Representations","authors":"Shishir Agrawal, Matthias Strauch","doi":"arxiv-2409.05079","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study resolutions of locally analytic\nrepresentations of a $p$-adic reductive group $G$. Given a locally analytic\nrepresentation $V$ of $G$, we modify the Schneider-Stuhler complex (originally\ndefined for smooth representations) so as to give an `analytic' variant\n${\\mathcal S}^A_\\bullet(V)$. The representations in this complex are built out\nof spaces of analytic vectors $A_\\sigma(V)$ for compact open subgroups\n$U_\\sigma$, indexed by facets $\\sigma$ of the Bruhat-Tits building of $G$.\nThese analytic representations (of compact open subgroups of $G$) are then\nresolved using the Chevalley-Eilenberg complex from the theory of Lie algebras.\nThis gives rise to a resolution ${\\mathcal S}^{\\rm CE}_{q,\\bullet}(V)\n\\rightarrow {\\mathcal S}^A_q(V)$ for each representation ${\\mathcal S}^A_q(V)$\nin the analytic Schneider-Stuhler complex. In a last step we show that the\nfamily of representations ${\\mathcal S}^{\\rm CE}_{q,j}(V)$ can be given the\nstructure of a Wall complex. The associated total complex ${\\mathcal S}^{\\rm\nCE}_\\bullet(V)$ has then the same homology as that of ${\\mathcal\nS}^A_\\bullet(V)$. If the latter is a resolution of $V$, then one can use\n${\\mathcal S}^{\\rm CE}_\\bullet(V)$ to find a complex which computes the\nextension group $\\underline{Ext}^n_G(V,W)$, provided $V$ and $W$ satisfy\ncertain conditions which are satisfied when both are admissible locally\nanalytic representations.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to study resolutions of locally analytic representations of a $p$-adic reductive group $G$. Given a locally analytic representation $V$ of $G$, we modify the Schneider-Stuhler complex (originally defined for smooth representations) so as to give an `analytic' variant ${\mathcal S}^A_\bullet(V)$. The representations in this complex are built out of spaces of analytic vectors $A_\sigma(V)$ for compact open subgroups $U_\sigma$, indexed by facets $\sigma$ of the Bruhat-Tits building of $G$. These analytic representations (of compact open subgroups of $G$) are then resolved using the Chevalley-Eilenberg complex from the theory of Lie algebras. This gives rise to a resolution ${\mathcal S}^{\rm CE}_{q,\bullet}(V) \rightarrow {\mathcal S}^A_q(V)$ for each representation ${\mathcal S}^A_q(V)$ in the analytic Schneider-Stuhler complex. In a last step we show that the family of representations ${\mathcal S}^{\rm CE}_{q,j}(V)$ can be given the structure of a Wall complex. The associated total complex ${\mathcal S}^{\rm CE}_\bullet(V)$ has then the same homology as that of ${\mathcal S}^A_\bullet(V)$. If the latter is a resolution of $V$, then one can use ${\mathcal S}^{\rm CE}_\bullet(V)$ to find a complex which computes the extension group $\underline{Ext}^n_G(V,W)$, provided $V$ and $W$ satisfy certain conditions which are satisfied when both are admissible locally analytic representations.
局部解析表示的分辨率
本文的目的是研究 $p$-adic 还原群 $G$ 的局部解析表示的解析。给定$G$的局部解析表示$V$,我们修改施耐德-斯图勒复数(最初是为光滑表示定义的),从而给出一个 "解析 "变体${mathcal S}^A_\bullet(V)$ 。这个复数中的表示是由紧凑开子群$U_\sigma$的解析向量空间$A_\sigma(V)$构建的,这些解析向量空间是由$G$的布鲁哈特-提茨构造的面$\sigma$索引的。然后,这些($G$ 的紧凑开放子群的)解析表示将使用列代数理论中的 Chevalley-Eilenberg 复数来解析。这将为解析施耐德-斯图勒复数中的每个表示 ${\mathcal S}^{\rm CE}_{q,\bullet}(V)\rightarrow {\mathcal S}^A_q(V)$ 带来一个解析 ${\mathcal S}^{/rm CE}_{q,\bullet}(V)\rightarrow {\mathcal S}^A_q(V)$ 。最后一步,我们证明表征${/mathcal S}^{\rm CE}_{q,j}(V)$ 的家族可以被赋予华尔复数的结构。相关的总复数 $\{mathcal S}^{rmCE}_\bullet(V)$ 与 $\{mathcalS}^A_\bullet(V)$ 具有相同的同源性。如果后者是 $V$ 的解析,那么我们就可以用 ${\mathcal S}^{\rm CE}_\bullet(V)$ 来找到一个复数来计算扩展群 $underline{Ext}^n_G(V,W)$,前提是 $V$ 和 $W$ 满足某些条件,而当两者都是可容许的局部解析表示时,这些条件就会得到满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信