S-dual of Hamiltonian $\mathbf G$ spaces and relative Langlands duality

Hiraku Nakajima
{"title":"S-dual of Hamiltonian $\\mathbf G$ spaces and relative Langlands duality","authors":"Hiraku Nakajima","doi":"arxiv-2409.06303","DOIUrl":null,"url":null,"abstract":"The S-dual $(\\mathbf G^\\vee\\curvearrowright\\mathbf M^\\vee)$ of the pair\n$(\\mathbf G\\curvearrowright\\mathbf M)$ of a smooth affine algebraic symplectic\nmanifold $\\mathbf M$ with hamiltonian action of a complex reductive group\n$\\mathbf G$ was introduced implicitly in [arXiv:1706.02112] and explicitly in\n[arXiv:1807.09038] under the cotangent type assumption. The definition was a\nmodification of the definition of Coulomb branches of gauge theories in\n[arXiv:1601.03586]. It was motivated by the S-duality of boundary conditions of\n4-dimensional $\\mathcal N=4$ super Yang-Mills theory, studied by Gaiotto and\nWitten [arXiv:0807.3720]. It is also relevant to the relative Langlands duality\nproposed by Ben-Zvi, Sakellaridis and Venkatesh. In this article, we review the\ndefinition and properties of S-dual.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The S-dual $(\mathbf G^\vee\curvearrowright\mathbf M^\vee)$ of the pair $(\mathbf G\curvearrowright\mathbf M)$ of a smooth affine algebraic symplectic manifold $\mathbf M$ with hamiltonian action of a complex reductive group $\mathbf G$ was introduced implicitly in [arXiv:1706.02112] and explicitly in [arXiv:1807.09038] under the cotangent type assumption. The definition was a modification of the definition of Coulomb branches of gauge theories in [arXiv:1601.03586]. It was motivated by the S-duality of boundary conditions of 4-dimensional $\mathcal N=4$ super Yang-Mills theory, studied by Gaiotto and Witten [arXiv:0807.3720]. It is also relevant to the relative Langlands duality proposed by Ben-Zvi, Sakellaridis and Venkatesh. In this article, we review the definition and properties of S-dual.
哈密顿$\mathbf G$空间的S对偶性和相对朗兰兹对偶性
S-dual $(\mathbf G^\vee\curvearrowright\mathbf M^\vee)$ of the pair$(\mathbf G\curvearrowright\mathbf M)$ of a smooth affine algebraic symplecticmanifold $\mathbf M$ with hamiltonian action of a complex reductive group$\mathbf G$ 在[arXiv:1706.02112]中隐含地提出,并在[arXiv:1807.09038]中根据余切型假设明确地提出。这个定义是对[arXiv:1601.03586]中规理论库仑分支定义的修正。它是由 Gaiotto 和 Witten [arXiv:0807.3720]研究的 4 维 $\mathcal N=4$ 超级杨-米尔斯理论边界条件的 S 对偶性激发的。它也与 Ben-Zvi、Sakellaridis 和 Venkatesh 提出的相对朗兰兹对偶性有关。本文回顾了 S 对偶的定义和性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信