Auslander-Reiten's Cohen-Macaulay algebras and contracted preprojective algebras

Aaron Chan, Osamu Iyama, Rene Marczinzik
{"title":"Auslander-Reiten's Cohen-Macaulay algebras and contracted preprojective algebras","authors":"Aaron Chan, Osamu Iyama, Rene Marczinzik","doi":"arxiv-2409.05603","DOIUrl":null,"url":null,"abstract":"Auslander and Reiten called a finite dimensional algebra $A$ over a field\nCohen-Macaulay if there is an $A$-bimodule $W$ which gives an equivalence\nbetween the category of finitely generated $A$-modules of finite projective\ndimension and the category of finitely generated $A$-modules of finite\ninjective dimension. For example, Iwanaga-Gorenstein algebras and algebras with\nfinitistic dimension zero on both sides are Cohen-Macaulay, and tensor products\nof Cohen-Macaulay algebras are again Cohen-Macaulay. They seem to be all of the\nknown examples of Cohen-Macaulay algebras. In this paper, we give the first non-trivial class of Cohen-Macaulay algebras\nby showing that all contracted preprojective algebras of Dynkin type are\nCohen-Macaulay. As a consequence, for each simple singularity $R$ and a maximal\nCohen-Macaulay $R$-module $M$, the stable endomorphism algebra\n$\\underline{End}_R(M)$ is Cohen-Macaulay. We also give a negative answer to a\nquestion of Auslander-Reiten asking whether the category $CM A$ of\nCohen-Macaulay $A$-modules coincides with the category of $d$-th syzygies,\nwhere $d\\ge1$ is the injective dimension of $W$. In fact, if $A$ is a\nCohen-Macaulay algebra that is additionally $d$-Gorenstein in the sense of\nAuslander, then $CM A$ always coincides with the category of $d$-th syzygies.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Auslander and Reiten called a finite dimensional algebra $A$ over a field Cohen-Macaulay if there is an $A$-bimodule $W$ which gives an equivalence between the category of finitely generated $A$-modules of finite projective dimension and the category of finitely generated $A$-modules of finite injective dimension. For example, Iwanaga-Gorenstein algebras and algebras with finitistic dimension zero on both sides are Cohen-Macaulay, and tensor products of Cohen-Macaulay algebras are again Cohen-Macaulay. They seem to be all of the known examples of Cohen-Macaulay algebras. In this paper, we give the first non-trivial class of Cohen-Macaulay algebras by showing that all contracted preprojective algebras of Dynkin type are Cohen-Macaulay. As a consequence, for each simple singularity $R$ and a maximal Cohen-Macaulay $R$-module $M$, the stable endomorphism algebra $\underline{End}_R(M)$ is Cohen-Macaulay. We also give a negative answer to a question of Auslander-Reiten asking whether the category $CM A$ of Cohen-Macaulay $A$-modules coincides with the category of $d$-th syzygies, where $d\ge1$ is the injective dimension of $W$. In fact, if $A$ is a Cohen-Macaulay algebra that is additionally $d$-Gorenstein in the sense of Auslander, then $CM A$ always coincides with the category of $d$-th syzygies.
Auslander-Reiten 的科恩-麦考莱代数和收缩前投影代数
Auslander 和 Reiten 把一个域上的有限维代数 $A$ 称为科恩-麦考莱,如果有一个 $A$- bimodule $W$ 给出了有限投影维的有限生成 $A$ 模块范畴与有限注入维的有限生成 $A$ 模块范畴之间的等价关系。例如,岩永-哥伦布代数和两边有限维为零的代数都是科恩-麦考莱代数,而科恩-麦考莱代数的张量积又是科恩-麦考莱代数。它们似乎是 Cohen-Macaulay 对象的所有已知例子。在本文中,我们通过证明所有 Dynkin 类型的收缩前投影代数都是 Cohen-Macaulay 代数,给出了第一类非难的 Cohen-Macaulay 代数。因此,对于每个简单奇点 $R$ 和最大科恩-麦考莱 $R$ 模块 $M$,稳定的内态化代数$underline{End}_R(M)$ 是科恩-麦考莱的。我们还给出了对奥斯兰德-雷滕(Auslander-Reiten)所提问题的否定回答,即科恩-麦考莱 $A$ 模块的类别 $CM A$ 是否与 $d$-th syzygies 的类别重合,其中 $d\ge1$ 是 $W$ 的注入维数。事实上,如果 $A$ 是一个科恩-马科莱代数,并且在奥斯兰德(Auslander)的意义上是额外的 $d$-戈伦斯坦,那么 $CM A$ 总是与 $d$-th syzygies 的范畴重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信