Heat Properties for Groups

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Erik Bédos, Roberto Conti
{"title":"Heat Properties for Groups","authors":"Erik Bédos, Roberto Conti","doi":"10.1007/s00041-024-10103-0","DOIUrl":null,"url":null,"abstract":"<p>We revisit Fourier’s approach to solve the heat equation on the circle in the context of (twisted) reduced group C*-algebras, convergence of Fourier series and semigroups associated to negative definite functions. We introduce some heat properties for countably infinite groups and investigate when they are satisfied. Kazhdan’s property (T) is an obstruction to the weakest property, and our findings leave open the possibility that this might be the only one. On the other hand, many groups with the Haagerup property satisfy the strongest version. We show that this heat property implies that the associated heat problem has a unique solution regardless of the choice of the initial datum.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10103-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit Fourier’s approach to solve the heat equation on the circle in the context of (twisted) reduced group C*-algebras, convergence of Fourier series and semigroups associated to negative definite functions. We introduce some heat properties for countably infinite groups and investigate when they are satisfied. Kazhdan’s property (T) is an obstruction to the weakest property, and our findings leave open the possibility that this might be the only one. On the other hand, many groups with the Haagerup property satisfy the strongest version. We show that this heat property implies that the associated heat problem has a unique solution regardless of the choice of the initial datum.

组的热性能
我们结合(扭曲)还原群 C* 玻钎、傅里叶级数的收敛性以及与负定函数相关的半群,重温了傅里叶求解圆上热方程的方法。我们介绍了可数无限群的一些热性质,并研究了它们何时满足。卡兹丹性质(T)是最弱性质的障碍,而我们的发现为这可能是唯一的性质提供了可能性。另一方面,许多具有哈格鲁普性质的群都满足最强性质。我们证明,无论初始基准如何选择,这一热性质都意味着相关的热问题有唯一的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信