{"title":"Maximal Integral Inequalities and Hausdorff–Young","authors":"Calixto P. Calderón, Alberto Torchinsky","doi":"10.1007/s00041-024-10111-0","DOIUrl":null,"url":null,"abstract":"<p>We discuss the Hausdorff–Young inequality in the context of maximal integral estimates, including the case of Hermite and Laguerre expansions. We establish a maximal inequality for integral operators with bounded kernel on <span>\\({\\mathbb {R}}\\)</span>, which in particular allows for the pointwise evaluation of these operators, including the Fourier transform, for functions in appropriate Lorentz and Orlicz spaces. In the case of the Hermite expansions we prove a refined Hausdorff–Young inequality, further sharpened by considering the maximal Hermite coefficients in place of the Hermite coefficients when estimating the appropriate Lorentz and Orlicz norms. We also consider the refined companion Hausdorff–Young inequality and Hardy–Littlewood type inequalities for the Hermite expansions. Similar results are proved for the Laguerre expansions.\n</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"35 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10111-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss the Hausdorff–Young inequality in the context of maximal integral estimates, including the case of Hermite and Laguerre expansions. We establish a maximal inequality for integral operators with bounded kernel on \({\mathbb {R}}\), which in particular allows for the pointwise evaluation of these operators, including the Fourier transform, for functions in appropriate Lorentz and Orlicz spaces. In the case of the Hermite expansions we prove a refined Hausdorff–Young inequality, further sharpened by considering the maximal Hermite coefficients in place of the Hermite coefficients when estimating the appropriate Lorentz and Orlicz norms. We also consider the refined companion Hausdorff–Young inequality and Hardy–Littlewood type inequalities for the Hermite expansions. Similar results are proved for the Laguerre expansions.
期刊介绍:
The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics.
TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers.
Areas of applications include the following:
antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications