{"title":"Hankel Matrices Acting on the Dirichlet Space","authors":"Guanlong Bao, Kunyu Guo, Fangmei Sun, Zipeng Wang","doi":"10.1007/s00041-024-10112-z","DOIUrl":null,"url":null,"abstract":"<p>The study of the infinite Hankel matrix acting on analytic function spaces dates back to the influential work of Nehari and Widom on the Hardy space <span>\\(H^2\\)</span>. Since then, it has been extensively generalized to other settings such as weighted Bergman spaces, Dirichlet type spaces, and Möbius invariant function spaces. Nevertheless, several fundamental operator-theoretic questions, including the boundedness and compactness, remain unresolved in the context of the Dirichlet space. Motivated by this, via Carleson measures, the Widom type condition, and the reproducing kernel thesis, we obtain: </p><ol>\n<li>\n<span>(i)</span>\n<p>necessary and sufficient conditions for bounded and compact operators induced by Hankel matrices on the Dirichlet space, thereby answering a folk question in this field (Galanopoulos et al. in Result Math 78(3) Paper No. 106, 2023);</p>\n</li>\n<li>\n<span>(ii)</span>\n<p>necessary and sufficient conditions for bounded and compact operators induced by Cesàro type matrices on the Dirichlet space.</p>\n</li>\n</ol><p> As a beneficial product, we find an intrinsic function-theoretic characterization of functions with positive decreasing Taylor coefficients in the function space <span>\\({\\mathcal {X}}\\)</span> throughly studied by Arcozzi et al. (Lond Math Soc II Ser 83(1):1–18, 2011). In addition, we also show that a random Dirichlet function almost surely induces a compact Hankel type operator on the Dirichlet space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10112-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the infinite Hankel matrix acting on analytic function spaces dates back to the influential work of Nehari and Widom on the Hardy space \(H^2\). Since then, it has been extensively generalized to other settings such as weighted Bergman spaces, Dirichlet type spaces, and Möbius invariant function spaces. Nevertheless, several fundamental operator-theoretic questions, including the boundedness and compactness, remain unresolved in the context of the Dirichlet space. Motivated by this, via Carleson measures, the Widom type condition, and the reproducing kernel thesis, we obtain:
(i)
necessary and sufficient conditions for bounded and compact operators induced by Hankel matrices on the Dirichlet space, thereby answering a folk question in this field (Galanopoulos et al. in Result Math 78(3) Paper No. 106, 2023);
(ii)
necessary and sufficient conditions for bounded and compact operators induced by Cesàro type matrices on the Dirichlet space.
As a beneficial product, we find an intrinsic function-theoretic characterization of functions with positive decreasing Taylor coefficients in the function space \({\mathcal {X}}\) throughly studied by Arcozzi et al. (Lond Math Soc II Ser 83(1):1–18, 2011). In addition, we also show that a random Dirichlet function almost surely induces a compact Hankel type operator on the Dirichlet space.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.