Yang He, Mengxue Zhang, Maowu Nie, Shanshan Cao, Li Yi
{"title":"Exploring system-size dependence of jet modification in heavy-ion collisions","authors":"Yang He, Mengxue Zhang, Maowu Nie, Shanshan Cao, Li Yi","doi":"10.1103/physrevc.110.034902","DOIUrl":null,"url":null,"abstract":"In relativistic heavy-ion collisions, jet quenching in quark-gluon plasma (QGP) has been extensively studied, revealing important insights into the properties of the color deconfined nuclear matter. Over the past decade, there has been a surge of interest in the exploration of QGP droplets in small collision systems, such as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mo>+</mo><mi>p</mi></mrow></math> or <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mo>+</mo><mi>A</mi></mrow></math> collisions, driven by the observation of collective flow phenomena. However, the absence of jet quenching, a key QGP signature, in these systems poses a puzzle. Understanding how jet quenching evolves with system size is crucial for uncovering the underlying physics. In this study, we employ the linear Boltzmann transport (LBT) model to investigate jet modification in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Ru</mi><mprescripts></mprescripts><none></none><mn>96</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Ru</mi><mprescripts></mprescripts><none></none><mn>96</mn></mmultiscripts></mrow><mo>,</mo><mo> </mo><mrow><mmultiscripts><mi>Zr</mi><mprescripts></mprescripts><none></none><mn>96</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Zr</mi><mprescripts></mprescripts><none></none><mn>96</mn></mmultiscripts></mrow></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Au</mi><mprescripts></mprescripts><none></none><mn>197</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Au</mi><mprescripts></mprescripts><none></none><mn>197</mn></mmultiscripts></mrow></math> collisions at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>200</mn></mrow></math> GeV. Our findings highlight the system size sensitivity exhibited by jet nuclear modification factor (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mrow><mi>A</mi><mi>A</mi></mrow></msub></math>) and jet shape (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ρ</mi></math>), contrasting to the relatively weak responses of jet mass (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>), girth (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>) and momentum dispersion (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>p</mi><mi mathvariant=\"normal\">T</mi></msub><mi>D</mi></mrow></math>) to system size variations. These results offer invaluable insights into the system size dependence of the QGP properties and await experimental validation at the Relativistic Heavy-Ion Collider.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"156 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034902","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In relativistic heavy-ion collisions, jet quenching in quark-gluon plasma (QGP) has been extensively studied, revealing important insights into the properties of the color deconfined nuclear matter. Over the past decade, there has been a surge of interest in the exploration of QGP droplets in small collision systems, such as or collisions, driven by the observation of collective flow phenomena. However, the absence of jet quenching, a key QGP signature, in these systems poses a puzzle. Understanding how jet quenching evolves with system size is crucial for uncovering the underlying physics. In this study, we employ the linear Boltzmann transport (LBT) model to investigate jet modification in , and collisions at GeV. Our findings highlight the system size sensitivity exhibited by jet nuclear modification factor () and jet shape (), contrasting to the relatively weak responses of jet mass (), girth () and momentum dispersion () to system size variations. These results offer invaluable insights into the system size dependence of the QGP properties and await experimental validation at the Relativistic Heavy-Ion Collider.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics