Global strong solutions with large oscillations to the 3D full compressible Navier–Stokes equations without heat conductivity

IF 1.1 3区 数学 Q1 MATHEMATICS
Haibo Yu
{"title":"Global strong solutions with large oscillations to the 3D full compressible Navier–Stokes equations without heat conductivity","authors":"Haibo Yu","doi":"10.1007/s00028-024-01002-4","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the Cauchy problem to the three-dimensional full compressible Navier–Stokes equations with zero heat conductivity. Under the condition that the initial energy is small enough, global existence of strong solutions is established. Especially, the initial density is allowed to have large oscillations. The key to estimate the pointwise lower and upper bounds of the density lies in the handling of the energy conservation equation and the boundedness of the <span>\\(L^r\\)</span>–norm of the gradient of the pressure.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01002-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the Cauchy problem to the three-dimensional full compressible Navier–Stokes equations with zero heat conductivity. Under the condition that the initial energy is small enough, global existence of strong solutions is established. Especially, the initial density is allowed to have large oscillations. The key to estimate the pointwise lower and upper bounds of the density lies in the handling of the energy conservation equation and the boundedness of the \(L^r\)–norm of the gradient of the pressure.

无热传导的三维全可压缩纳维-斯托克斯方程具有大振荡的全局强解
我们关注的是热导率为零的三维全可压缩纳维-斯托克斯方程的考奇问题。在初始能量足够小的条件下,建立了强解的全局存在性。特别是允许初始密度有较大的振荡。估计密度的点下限和上限的关键在于能量守恒方程的处理和压力梯度的 \(L^r\)-norm 的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信