Mathematical analysis of the motion of a piston in a fluid with density dependent viscosity

IF 1.1 3区 数学 Q1 MATHEMATICS
Vaibhav Kumar Jena, Debayan Maity, Abu Sufian
{"title":"Mathematical analysis of the motion of a piston in a fluid with density dependent viscosity","authors":"Vaibhav Kumar Jena, Debayan Maity, Abu Sufian","doi":"10.1007/s00028-024-01006-0","DOIUrl":null,"url":null,"abstract":"<p>We study a free boundary value problem modelling the motion of a piston in a viscous compressible fluid. The fluid is modelled by 1D compressible Navier–Stokes equations with possibly degenerate viscosity coefficient, and the motion of the piston is described by Newton’s second law. We show that the initial boundary value problem has a unique global in time solution, and we also determine the large time behaviour of the system. Finally, we show how our methodology may be adapted to the motion of several pistons.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01006-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a free boundary value problem modelling the motion of a piston in a viscous compressible fluid. The fluid is modelled by 1D compressible Navier–Stokes equations with possibly degenerate viscosity coefficient, and the motion of the piston is described by Newton’s second law. We show that the initial boundary value problem has a unique global in time solution, and we also determine the large time behaviour of the system. Finally, we show how our methodology may be adapted to the motion of several pistons.

活塞在粘性随密度变化的流体中运动的数学分析
我们研究了一个模拟活塞在粘性可压缩流体中运动的自由边界值问题。流体由一维可压缩纳维-斯托克斯方程建模,该方程可能具有退化粘度系数,活塞的运动由牛顿第二定律描述。我们证明了初始边界值问题具有唯一的全局时间解,我们还确定了系统的大时间行为。最后,我们展示了我们的方法如何适用于多个活塞的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信