Atomistically Informed Phase Field Modeling of Solid-Solid Phase Transformations

IF 1.5 4区 材料科学 Q4 CHEMISTRY, PHYSICAL
Ayush Suhane, Matthias Militzer
{"title":"Atomistically Informed Phase Field Modeling of Solid-Solid Phase Transformations","authors":"Ayush Suhane, Matthias Militzer","doi":"10.1007/s11669-024-01146-3","DOIUrl":null,"url":null,"abstract":"<p>The quantification of the role of alloying elements on interface migration during phase transformations in steels and selected non-ferrous alloys (e.g., Ti-based) remains an active area of research that was inspired by seminal contributions of Mats Hillert. In previous studies we had introduced atomistically informed solute drag models for simulation of grain growth and recrystallization. In the present study this approach is extended to diffusional phase transformations where a fast-diffusing species (e.g., C in Fe) redistributes between the parent and daughter phases. The proposed methodology is demonstrated with a conceptional analysis of nano- and mesoscale phase field simulations for model binary and ternary alloys. The approach is shown to be consistent with the formulations of the Hillert–Sundman solute drag model. The challenges in applying this simulation approach to experimental data are critically discussed.</p>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11669-024-01146-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quantification of the role of alloying elements on interface migration during phase transformations in steels and selected non-ferrous alloys (e.g., Ti-based) remains an active area of research that was inspired by seminal contributions of Mats Hillert. In previous studies we had introduced atomistically informed solute drag models for simulation of grain growth and recrystallization. In the present study this approach is extended to diffusional phase transformations where a fast-diffusing species (e.g., C in Fe) redistributes between the parent and daughter phases. The proposed methodology is demonstrated with a conceptional analysis of nano- and mesoscale phase field simulations for model binary and ternary alloys. The approach is shown to be consistent with the formulations of the Hillert–Sundman solute drag model. The challenges in applying this simulation approach to experimental data are critically discussed.

Abstract Image

固-固相变的原子信息相场建模
在钢和特定有色合金(如钛基合金)相变过程中,合金元素对界面迁移作用的量化仍然是一个活跃的研究领域,其灵感来自于 Mats Hillert 的开创性贡献。在之前的研究中,我们引入了原子信息溶质拖曳模型来模拟晶粒长大和再结晶。在本研究中,这种方法被扩展到扩散相变,即快速扩散物种(如铁中的 C)在母相和子相之间重新分布。通过对模型二元和三元合金的纳米和中尺度相场模拟进行概念分析,证明了所提出的方法。结果表明,该方法与希勒特-桑德曼溶质阻力模型的公式一致。对将这种模拟方法应用于实验数据所面临的挑战进行了批判性讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Phase Equilibria and Diffusion
Journal of Phase Equilibria and Diffusion 工程技术-材料科学:综合
CiteScore
2.50
自引率
7.10%
发文量
70
审稿时长
1 months
期刊介绍: The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts. The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use. Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信