{"title":"Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1<\\alpha <2$$ via Resolvent Sequences","authors":"Rodrigo Ponce","doi":"10.1007/s10957-024-02516-0","DOIUrl":null,"url":null,"abstract":"<p>We study the approximate controllability of the discrete fractional systems of order <span>\\(1<\\alpha <2\\)</span></p><span>$$\\begin{aligned} (*)\\quad \\,_C\\nabla ^{\\alpha } u^n=Au^n+Bv^n+f(n,u^n), \\quad n\\ge 2, \\end{aligned}$$</span><p>subject to the initial states <span>\\(u^0=x_0,u^1=x_1,\\)</span> where <i>A</i> is a closed linear operator defined in a Hilbert space <i>X</i>, <i>B</i> is a bounded linear operator from a Hilbert space <i>U</i> into <span>\\(X, f:{\\mathbb {N}}_0\\times X\\rightarrow X\\)</span> is a given sequence and <span>\\(\\,_C\\nabla ^{\\alpha } u^n\\)</span> is an approximation of the Caputo fractional derivative <span>\\(\\partial ^\\alpha _t\\)</span> of <i>u</i> at <span>\\(t_n:=\\tau n,\\)</span> where <span>\\(\\tau >0\\)</span> is a given step size. To do this, we first study resolvent sequences <span>\\(\\{S_{\\alpha ,\\beta }^n\\}_{n\\in {\\mathbb {N}}_0}\\)</span> generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to <span>\\((*)\\)</span> and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system <span>\\((*)\\)</span> in terms of the resolvent sequence <span>\\(\\{S_{\\alpha ,\\beta }^n\\}_{n\\in {\\mathbb {N}}_0}\\)</span> for some <span>\\(\\alpha ,\\beta >0.\\)</span> Finally, we provide an example to illustrate our results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02516-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the approximate controllability of the discrete fractional systems of order \(1<\alpha <2\)
subject to the initial states \(u^0=x_0,u^1=x_1,\) where A is a closed linear operator defined in a Hilbert space X, B is a bounded linear operator from a Hilbert space U into \(X, f:{\mathbb {N}}_0\times X\rightarrow X\) is a given sequence and \(\,_C\nabla ^{\alpha } u^n\) is an approximation of the Caputo fractional derivative \(\partial ^\alpha _t\) of u at \(t_n:=\tau n,\) where \(\tau >0\) is a given step size. To do this, we first study resolvent sequences \(\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\) generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to \((*)\) and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system \((*)\) in terms of the resolvent sequence \(\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\) for some \(\alpha ,\beta >0.\) Finally, we provide an example to illustrate our results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.