{"title":"Regularized and Structured Tensor Total Least Squares Methods with Applications","authors":"Feiyang Han, Yimin Wei, Pengpeng Xie","doi":"10.1007/s10957-024-02507-1","DOIUrl":null,"url":null,"abstract":"<p>Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02507-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.