A Converse Lyapunov-Type Theorem for Control Systems with Regulated Cost

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Anna Chiara Lai, Monica Motta
{"title":"A Converse Lyapunov-Type Theorem for Control Systems with Regulated Cost","authors":"Anna Chiara Lai, Monica Motta","doi":"10.1007/s10957-024-02517-z","DOIUrl":null,"url":null,"abstract":"<p>Given a nonlinear control system, a target set, a nonnegative integral cost, and a continuous function <i>W</i>, we say that the system is <i>globally asymptotically controllable to the target with</i> <i>W</i>-<i>regulated cost</i>, whenever, starting from any point <i>z</i>, among the strategies that achieve classical asymptotic controllability we can select one that also keeps the cost less than <i>W</i>(<i>z</i>). In this paper, assuming mild regularity hypotheses on the data, we prove that a necessary and sufficient condition for global asymptotic controllability with regulated cost is the existence of a special, continuous Control Lyapunov Function, called a <i>Minimum Restraint Function</i>. The main novelty is the necessity implication, obtained here for the first time. Nevertheless, the sufficiency condition extends previous results based on semiconcavity of the Minimum Restraint Function, while we require mere continuity.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"14 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02517-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given a nonlinear control system, a target set, a nonnegative integral cost, and a continuous function W, we say that the system is globally asymptotically controllable to the target with W-regulated cost, whenever, starting from any point z, among the strategies that achieve classical asymptotic controllability we can select one that also keeps the cost less than W(z). In this paper, assuming mild regularity hypotheses on the data, we prove that a necessary and sufficient condition for global asymptotic controllability with regulated cost is the existence of a special, continuous Control Lyapunov Function, called a Minimum Restraint Function. The main novelty is the necessity implication, obtained here for the first time. Nevertheless, the sufficiency condition extends previous results based on semiconcavity of the Minimum Restraint Function, while we require mere continuity.

具有调节成本的控制系统的逆 Lyapunov 型定理
给定一个非线性控制系统、一个目标集、一个非负积分成本和一个连续函数 W,只要从任意点 z 开始,在实现经典渐近可控性的策略中,我们能选择一个策略,同时使成本小于 W(z),我们就说该系统具有 W 调节成本的全局渐近可控性。在本文中,假设数据具有温和的正则性假设,我们证明了具有调节成本的全局渐近可控性的必要且充分条件是存在一个特殊的连续控制李亚普诺夫函数,即最小约束函数。主要的新颖之处在于这里首次获得的必要性含义。不过,充分性条件扩展了之前基于最小约束函数半空性的结果,而我们要求的仅仅是连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信