A. A. Sukhanov, V. F. Valeev, V. I. Nuzhdin, R. I. Khaibullin
{"title":"Photo-Stimulated EPR Spectroscopy of Oxygen Defects in a Rutile (TiO2) Crystal Irradiated with Ar Ions","authors":"A. A. Sukhanov, V. F. Valeev, V. I. Nuzhdin, R. I. Khaibullin","doi":"10.1134/S1062873824707116","DOIUrl":null,"url":null,"abstract":"<p>The electron paramagnetic resonance (EPR) spectra of oxygen-deficient rutile TiO<sub>2 – δ</sub> under photoexcitation at low temperatures in the range of 15–40 K were measured. Excluding the early described Ti<sup>3+</sup> centers, concentration of which is independent of photoexcitation, new EPR signals appear at various wavelengths (λ) of photoexcitation taken in the range 400–460 nm. From the analysis of the EPR data we conclude that the observed EPR signals can be attributed to either the positive-charged oxygen vacancies (<span>\\({\\text{V}}_{{\\text{O}}}^{ + }\\)</span>) with <i>S</i> = 1/2 (upon photoexcitation with λ ≤ 420 nm only), or more complex defects such as positively-charged [Ti<sup>3+</sup>–V<sub>O</sub>]<sup>+</sup> pairs with <i>S</i> = 1/2 and neutral complexes of (Ti<sup>3+</sup>–V<sub>O</sub>–Ti<sup>3+</sup>) with <i>S</i> = 1. The latter is observed upon photoexcitation with a wavelength above 420 nm.</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 7","pages":"1077 - 1081"},"PeriodicalIF":0.4800,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Russian Academy of Sciences: Physics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1062873824707116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The electron paramagnetic resonance (EPR) spectra of oxygen-deficient rutile TiO2 – δ under photoexcitation at low temperatures in the range of 15–40 K were measured. Excluding the early described Ti3+ centers, concentration of which is independent of photoexcitation, new EPR signals appear at various wavelengths (λ) of photoexcitation taken in the range 400–460 nm. From the analysis of the EPR data we conclude that the observed EPR signals can be attributed to either the positive-charged oxygen vacancies (\({\text{V}}_{{\text{O}}}^{ + }\)) with S = 1/2 (upon photoexcitation with λ ≤ 420 nm only), or more complex defects such as positively-charged [Ti3+–VO]+ pairs with S = 1/2 and neutral complexes of (Ti3+–VO–Ti3+) with S = 1. The latter is observed upon photoexcitation with a wavelength above 420 nm.
期刊介绍:
Bulletin of the Russian Academy of Sciences: Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It presents full-text articles (regular, letters to the editor, reviews) with the most recent results in miscellaneous fields of physics and astronomy: nuclear physics, cosmic rays, condensed matter physics, plasma physics, optics and photonics, nanotechnologies, solar and astrophysics, physical applications in material sciences, life sciences, etc. Bulletin of the Russian Academy of Sciences: Physics focuses on the most relevant multidisciplinary topics in natural sciences, both fundamental and applied. Manuscripts can be submitted in Russian and English languages and are subject to peer review. Accepted articles are usually combined in thematic issues on certain topics according to the journal editorial policy. Authors featured in the journal represent renowned scientific laboratories and institutes from different countries, including large international collaborations. There are globally recognized researchers among the authors: Nobel laureates and recipients of other awards, and members of national academies of sciences and international scientific societies.