{"title":"Generation of Hydrocarbon Gases in Stepwise Pyrolysis of Artificially Matured Domanik Oil Shale Kerogen","authors":"N. S. Burdelnaya, D. A. Bushnev, A. A. Ilchenko","doi":"10.1134/S0965544124040029","DOIUrl":null,"url":null,"abstract":"<p>A series of kerogen samples were isolated from Domanik oil shale before and after hydrothermal treatment in an autoclave (at 250–375°C, for 24 h). Than composition of the C<sub>1</sub>–C<sub>5</sub> hydrocarbon gases generated in stepwise (300–800°C) pyrolysis of these kerogens was characterized by gas chromatography. According to the calculated EASY %Ro and Rock-Eval pyrolysis data, the highest maturity level of the organic matter reached by the hydrothermal treatment corresponded to the MC<sub>4</sub> stage. As the hydrothermal treatment temperature of the oil shale was elevated up to 325°C, the dry pyrolysis of residual kerogen led to the predominant generation of wet gases in which C<sub>2+</sub> prevailed over methane; at temperatures above 325°C, methane was predominant. Based on the pattern of the generation curves plotted individually for C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>2</sub>–C<sub>5</sub>, and C<sub>4</sub>–C<sub>5</sub> gases, methane was found to have additional sources in the kerogen structure, compared to C<sub>2+</sub> gases. Ethane and ethylene are generated simultaneously <i>via</i> the free-radical decomposition of alkyl structures; moreover, at high pyrolysis temperatures, ethane and ethylene have some precursors other than those of C<sub>3+</sub> gases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124040029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of kerogen samples were isolated from Domanik oil shale before and after hydrothermal treatment in an autoclave (at 250–375°C, for 24 h). Than composition of the C1–C5 hydrocarbon gases generated in stepwise (300–800°C) pyrolysis of these kerogens was characterized by gas chromatography. According to the calculated EASY %Ro and Rock-Eval pyrolysis data, the highest maturity level of the organic matter reached by the hydrothermal treatment corresponded to the MC4 stage. As the hydrothermal treatment temperature of the oil shale was elevated up to 325°C, the dry pyrolysis of residual kerogen led to the predominant generation of wet gases in which C2+ prevailed over methane; at temperatures above 325°C, methane was predominant. Based on the pattern of the generation curves plotted individually for C1, C2, C3, C2–C5, and C4–C5 gases, methane was found to have additional sources in the kerogen structure, compared to C2+ gases. Ethane and ethylene are generated simultaneously via the free-radical decomposition of alkyl structures; moreover, at high pyrolysis temperatures, ethane and ethylene have some precursors other than those of C3+ gases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.