Optimized task offloading for federated learning based on β-skeleton graph in edge computing

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS
Mahdi Fallah, Pedram Salehpour
{"title":"Optimized task offloading for federated learning based on β-skeleton graph in edge computing","authors":"Mahdi Fallah, Pedram Salehpour","doi":"10.1007/s11235-024-01216-4","DOIUrl":null,"url":null,"abstract":"<p>Edge computing is gaining prominence as a solution for IoT data management and processing. Task offloading, which distributes the processing load across edge devices, is a key strategy to enhance the efficiency of edge computing. However, traditional methods often overlook the dynamic nature of the edge environment and the interactions between devices. While reinforcement learning-based task offloading shows promise, it can sometimes lead to an imbalance by favoring weaker servers. To address these issues, this paper presents a novel task offloading method for federated learning that leverages the β-skeleton graph in edge computing. This model takes into account spatial and temporal dynamics, optimizing task assignments based on both the processing and communication capabilities of the edge devices. The proposed method significantly outperforms five state-of-the-art methods, showcasing substantial improvements in both initial and long-term performance. Specifically, this method demonstrates a 63.46% improvement over the Binary-SPF-EC method in the initial rounds and achieves an average improvement of 76.518% after 400 rounds. Moreover, it excels in sub-rewards and total latency reduction, underscoring its effectiveness in optimizing edge computing communication and processing tasks. These results underscore the superiority of the proposed method, highlighting its potential to enhance the efficiency and scalability of edge computing systems. This approach, by effectively addressing the dynamic nature of the edge environment and optimizing task offloading, contributes to the development of more robust and efficient edge computing frameworks. This work paves the way for future advancements in federated learning and edge computing integration, promising better management and utilization of IoT data.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01216-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing is gaining prominence as a solution for IoT data management and processing. Task offloading, which distributes the processing load across edge devices, is a key strategy to enhance the efficiency of edge computing. However, traditional methods often overlook the dynamic nature of the edge environment and the interactions between devices. While reinforcement learning-based task offloading shows promise, it can sometimes lead to an imbalance by favoring weaker servers. To address these issues, this paper presents a novel task offloading method for federated learning that leverages the β-skeleton graph in edge computing. This model takes into account spatial and temporal dynamics, optimizing task assignments based on both the processing and communication capabilities of the edge devices. The proposed method significantly outperforms five state-of-the-art methods, showcasing substantial improvements in both initial and long-term performance. Specifically, this method demonstrates a 63.46% improvement over the Binary-SPF-EC method in the initial rounds and achieves an average improvement of 76.518% after 400 rounds. Moreover, it excels in sub-rewards and total latency reduction, underscoring its effectiveness in optimizing edge computing communication and processing tasks. These results underscore the superiority of the proposed method, highlighting its potential to enhance the efficiency and scalability of edge computing systems. This approach, by effectively addressing the dynamic nature of the edge environment and optimizing task offloading, contributes to the development of more robust and efficient edge computing frameworks. This work paves the way for future advancements in federated learning and edge computing integration, promising better management and utilization of IoT data.

Abstract Image

基于边缘计算中的β骨架图,优化联合学习的任务卸载
作为物联网数据管理和处理的一种解决方案,边缘计算的地位日益突出。任务卸载(将处理负载分配给边缘设备)是提高边缘计算效率的关键策略。然而,传统方法往往忽视了边缘环境的动态性质和设备之间的交互。虽然基于强化学习的任务卸载很有前景,但它有时会偏向较弱的服务器,从而导致不平衡。为解决这些问题,本文提出了一种用于联合学习的新型任务卸载方法,该方法利用了边缘计算中的β骨架图。该模型考虑了空间和时间动态,根据边缘设备的处理和通信能力优化任务分配。所提出的方法明显优于五种最先进的方法,在初始性能和长期性能方面都有大幅提高。具体来说,该方法在初始轮次比二进制-SPF-EC 方法提高了 63.46%,在 400 轮次后平均提高了 76.518%。此外,该方法在减少子奖励和总延迟方面表现出色,突出了其在优化边缘计算通信和处理任务方面的有效性。这些结果凸显了所提方法的优越性,彰显了它在提高边缘计算系统的效率和可扩展性方面的潜力。这种方法能有效解决边缘环境的动态特性并优化任务卸载,有助于开发更强大、更高效的边缘计算框架。这项工作为联合学习和边缘计算集成的未来发展铺平了道路,有望更好地管理和利用物联网数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信