First part of Clausius heat theorem in terms of Noether's theorem

Aaron Beyen, Christian Maes
{"title":"First part of Clausius heat theorem in terms of Noether's theorem","authors":"Aaron Beyen, Christian Maes","doi":"arxiv-2408.15773","DOIUrl":null,"url":null,"abstract":"After Helmholtz, the mechanical foundation of thermodynamics included the\nFirst Law $d E = \\delta Q + \\delta W$, and the first part of the Clausius heat\ntheorem $\\delta Q^\\text{rev}/T = dS$. The resulting invariance of the entropy\n$S$ for quasistatic changes in thermally isolated systems invites a connection\nwith Noether's theorem (only established later). In this quest, we continue an\nidea, first brought up by Wald in black hole thermodynamics and by Sasa\n$\\textit{et al.}$ in various contexts. We follow both Lagrangian and\nHamiltonian frameworks, and emphasize the role of Killing equations for\nderiving a First Law for thermodynamically consistent trajectories, to end up\nwith an expression of ``heat over temperature'' as an exact differential of a\nNoether charge.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

After Helmholtz, the mechanical foundation of thermodynamics included the First Law $d E = \delta Q + \delta W$, and the first part of the Clausius heat theorem $\delta Q^\text{rev}/T = dS$. The resulting invariance of the entropy $S$ for quasistatic changes in thermally isolated systems invites a connection with Noether's theorem (only established later). In this quest, we continue an idea, first brought up by Wald in black hole thermodynamics and by Sasa $\textit{et al.}$ in various contexts. We follow both Lagrangian and Hamiltonian frameworks, and emphasize the role of Killing equations for deriving a First Law for thermodynamically consistent trajectories, to end up with an expression of ``heat over temperature'' as an exact differential of a Noether charge.
从诺特定理看克劳修斯热定理的第一部分
亥姆霍兹之后,热力学的力学基础包括第一定律 $d E = \delta Q + \delta W$,以及克劳修斯定理的第一部分 $\delta Q^\text{rev}/T = dS$。由此得出的热孤立系统中准静态变化的熵$S$的不变性与诺特定理(后来才建立)之间的联系。在这一探索中,我们延续了瓦尔德在黑洞热力学中首次提出的想法,以及萨萨(Sasa$\textit{et al.}$)在不同背景下提出的想法。我们同时遵循拉格朗日和哈密尔顿框架,并强调基林方程的作用,以得出热力学一致轨迹的第一定律,最终将 "温度热 "表达为诺特电荷的精确微分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信