{"title":"Model‐free adaptive load frequency control for power systems with wind penetration under deregulation environment","authors":"Yiming Zeng, Xuhui Bu, Yanling Yin","doi":"10.1002/asjc.3481","DOIUrl":null,"url":null,"abstract":"With the gradual deregulation of the power system by the power department, the power system has developed into a large‐scale and multiregional control system. Because of the power system internal complexity enhancing, the stable operation of power system becomes increasingly difficult. This paper analyzes the load frequency control problem of multiregional interconnected power system with wind energy. This study designs an improved model‐free adaptive control algorithm based on I/O data. It avoids model establishment of the multiregional power system. It also effectively solves the problem of frequency stability control under the influence of load change, introducing the generation participation matrix to simulate bilateral contracts under the power market. The dynamic evolution relationship of the system with the generation participation matrix is established, taking a three‐regional power system with wind energy as an example. Frequency fluctuations in all three regions are between . Convergence times of frequency deviation are all within 30 s, much less than the response time of load frequency control. The simulation results further demonstrate the effectiveness of the proposed algorithm, comparing the control algorithm proposed in this paper with other algorithms, which proves that the proposed algorithm has good control performance.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3481","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the gradual deregulation of the power system by the power department, the power system has developed into a large‐scale and multiregional control system. Because of the power system internal complexity enhancing, the stable operation of power system becomes increasingly difficult. This paper analyzes the load frequency control problem of multiregional interconnected power system with wind energy. This study designs an improved model‐free adaptive control algorithm based on I/O data. It avoids model establishment of the multiregional power system. It also effectively solves the problem of frequency stability control under the influence of load change, introducing the generation participation matrix to simulate bilateral contracts under the power market. The dynamic evolution relationship of the system with the generation participation matrix is established, taking a three‐regional power system with wind energy as an example. Frequency fluctuations in all three regions are between . Convergence times of frequency deviation are all within 30 s, much less than the response time of load frequency control. The simulation results further demonstrate the effectiveness of the proposed algorithm, comparing the control algorithm proposed in this paper with other algorithms, which proves that the proposed algorithm has good control performance.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.