Selective IgG binding to the LPS glycolipid core found in bovine colostrum, or milk, during Escherichia coli mastitis influences endotoxin function

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Suzanne M. Hurst, David A. L. Flossdorf, Raveen Koralagamage Don, Anton Pernthaner
{"title":"Selective IgG binding to the LPS glycolipid core found in bovine colostrum, or milk, during Escherichia coli mastitis influences endotoxin function","authors":"Suzanne M. Hurst, David A. L. Flossdorf, Raveen Koralagamage Don, Anton Pernthaner","doi":"10.1177/17534259241269724","DOIUrl":null,"url":null,"abstract":"The dynamic interplay between intramammary IgG, formation of antigen-IgG complexes and effector immune cell function is essential for immune homeostasis within the bovine mammary gland. We explore how changes in the recognition and binding of anti-LPS IgG to the glycolipid “functional” core in milk from healthy or clinically diagnosed Escherichia coli (E. coli) mastitis cows’ controls endotoxin function. In colostrum, we found a varied anti-LPS IgG repertoire and novel soluble LPS/IgG complexes with direct IgG binding to the LPS glycolipid core. These soluble complexes, absent in milk from healthy lactating cows, were evident in cows diagnosed with E. coli mastitis and correlated with endotoxin-driven inflammation. E. coli mastitis milk displayed a proportional reduction in anti-LPS glycolipid core IgG compared to colostrum. Milk IgG extracts showed that only colostrum IgG attenuated LPS induced endotoxin activity. Furthermore, LPS-stimulated reactive oxygen species (ROS) in milk granulocytes was only suppressed by colostrum IgG, while IgG extracts of neither colostrum nor E. coli mastitis milk influenced N-formylmethionine-leucyl-phenylalanine (fMLP)-stimulated ROS in LPS primed granulocytes. Our findings support bovine intramammary IgG diversity in health and in response to E. coli infection generate milk anti-LPS IgG repertoires that coordinate appropriate LPS innate-adaptive immune responses essential for animal health.","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259241269724","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic interplay between intramammary IgG, formation of antigen-IgG complexes and effector immune cell function is essential for immune homeostasis within the bovine mammary gland. We explore how changes in the recognition and binding of anti-LPS IgG to the glycolipid “functional” core in milk from healthy or clinically diagnosed Escherichia coli (E. coli) mastitis cows’ controls endotoxin function. In colostrum, we found a varied anti-LPS IgG repertoire and novel soluble LPS/IgG complexes with direct IgG binding to the LPS glycolipid core. These soluble complexes, absent in milk from healthy lactating cows, were evident in cows diagnosed with E. coli mastitis and correlated with endotoxin-driven inflammation. E. coli mastitis milk displayed a proportional reduction in anti-LPS glycolipid core IgG compared to colostrum. Milk IgG extracts showed that only colostrum IgG attenuated LPS induced endotoxin activity. Furthermore, LPS-stimulated reactive oxygen species (ROS) in milk granulocytes was only suppressed by colostrum IgG, while IgG extracts of neither colostrum nor E. coli mastitis milk influenced N-formylmethionine-leucyl-phenylalanine (fMLP)-stimulated ROS in LPS primed granulocytes. Our findings support bovine intramammary IgG diversity in health and in response to E. coli infection generate milk anti-LPS IgG repertoires that coordinate appropriate LPS innate-adaptive immune responses essential for animal health.
大肠杆菌乳腺炎期间,选择性 IgG 与牛初乳或牛奶中的 LPS 糖脂核心结合会影响内毒素功能
乳腺内 IgG、抗原-IgG 复合物的形成和效应免疫细胞功能之间的动态相互作用对牛乳腺内的免疫平衡至关重要。我们探讨了健康或临床诊断为大肠杆菌(E. coli)乳腺炎的奶牛乳汁中抗 LPS IgG 与糖脂 "功能 "核心的识别和结合变化如何控制内毒素功能。在初乳中,我们发现了多种抗 LPS IgG 复合物和新型可溶性 LPS/IgG 复合物,其中 IgG 与 LPS 糖脂核心直接结合。这些可溶性复合物在健康泌乳奶牛的乳汁中不存在,但在确诊患有大肠杆菌乳腺炎的奶牛中却很明显,并且与内毒素驱动的炎症相关。与初乳相比,大肠杆菌乳腺炎牛奶中的抗 LPS 糖脂核心 IgG 呈比例减少。牛奶 IgG 提取物显示,只有初乳 IgG 能减轻 LPS 诱导的内毒素活性。此外,只有牛初乳 IgG 能抑制牛奶粒细胞中 LPS 刺激的活性氧(ROS),而牛初乳和大肠杆菌乳腺炎牛奶的 IgG 提取物都不会影响 LPS 诱导的粒细胞中 N-甲酰蛋氨酸-亮氨酰-苯丙氨酸(fMLP)刺激的 ROS。我们的研究结果表明,牛在健康状态下乳房内 IgG 的多样性以及对大肠杆菌感染的反应会产生牛奶抗 LPS IgG 重排,从而协调对动物健康至关重要的适当的 LPS 先天适应性免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Innate Immunity
Innate Immunity 生物-免疫学
CiteScore
7.20
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信