An Edge Computing-Based Solution for Real-Time Leaf Disease Classification Using Thermal Imaging

Públio Elon Correa da Silva;Jurandy Almeida
{"title":"An Edge Computing-Based Solution for Real-Time Leaf Disease Classification Using Thermal Imaging","authors":"Públio Elon Correa da Silva;Jurandy Almeida","doi":"10.1109/LGRS.2024.3456637","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this letter, we explore the potential of edge computing (EC) for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate DL models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to \n<inline-formula> <tex-math>$1.48\\times $ </tex-math></inline-formula>\n faster on Edge TPU Max for VGG16, and up to \n<inline-formula> <tex-math>$2.13\\times $ </tex-math></inline-formula>\n faster with precision reduction on Intel NCS2 for MobileNetV1, compared with high-end GPUs like RTX 3090, while maintaining state-of-the-art accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669595/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this letter, we explore the potential of edge computing (EC) for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate DL models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to $1.48\times $ faster on Edge TPU Max for VGG16, and up to $2.13\times $ faster with precision reduction on Intel NCS2 for MobileNetV1, compared with high-end GPUs like RTX 3090, while maintaining state-of-the-art accuracy.
基于边缘计算的热成像叶病实时分类解决方案
深度学习(DL)技术可以通过改善作物健康监测和管理来改变农业,从而提高食品安全。在这封信中,我们探讨了边缘计算(EC)在利用热成像对叶片病害进行实时分类方面的潜力。我们提出了一个用于植物病害分类的热图像数据集,并在 Raspberry Pi 4B 等资源受限的设备上评估了 DL 模型,包括 InceptionV3、MobileNetV1、MobileNetV2 和 VGG-16。与 RTX 3090 等高端 GPU 相比,利用剪枝和量化感知训练,这些模型在 Edge TPU Max 上的推理时间比 VGG16 快达 1.48 倍,在英特尔 NCS2 上的精度降低后,MobileNetV1 的推理时间比 VGG16 快达 2.13 倍,同时保持了最先进的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信