Change point estimation for Gaussian time series data with copula-based Markov chain models

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Li-Hsien Sun, Yu-Kai Wang, Lien-Hsi Liu, Takeshi Emura, Chi-Yang Chiu
{"title":"Change point estimation for Gaussian time series data with copula-based Markov chain models","authors":"Li-Hsien Sun, Yu-Kai Wang, Lien-Hsi Liu, Takeshi Emura, Chi-Yang Chiu","doi":"10.1007/s00180-024-01541-x","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"46 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01541-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.

Abstract Image

利用基于共轭的马尔科夫链模型对高斯时间序列数据进行变化点估计
本文提出了一种变化点估计方法,重点是检测时间序列数据中的结构变化。传统的最大似然估计(MLE)方法通过自回归模型假设独立性或线性依赖性。为了解决这一局限性,本文引入了基于 copula 的马尔科夫链模型,提供更灵活的依赖性建模。这些模型将高斯时间序列视为马尔科夫链,并利用 copula 函数来处理序列依赖性。然后采用轮廓 MLE 程序来估计变化点和其他模型参数,牛顿-拉斐森算法可方便地进行估计值的数值计算。考虑到 2008 年金融危机和 2020 年 COVID-19 大流行这两个不同时期,通过模拟和实际股票回报数据对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信