Robust matrix factor analysis method with adaptive parameter adjustment using Cauchy weighting

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Junchen Li
{"title":"Robust matrix factor analysis method with adaptive parameter adjustment using Cauchy weighting","authors":"Junchen Li","doi":"10.1007/s00180-024-01548-4","DOIUrl":null,"url":null,"abstract":"<p>In recent years, high-dimensional matrix factor models have been widely applied in various fields. However, there are few methods that effectively handle heavy-tailed data. To address this problem, we introduced a smooth Cauchy loss function and established an optimization objective through norm minimization, deriving a Cauchy version of the weighted iterative estimation method. Unlike the Huber loss weighted estimation method, the weight calculation in this method is a smooth function rather than a piecewise function. It also considers the need to update parameters in the Cauchy loss function with each iteration during estimation. Ultimately, we propose a weighted estimation method with adaptive parameter adjustment. Subsequently, this paper analyzes the theoretical properties of the method, proving that it has a fast convergence rate. Through data simulation, our method demonstrates significant advantages. Thus, it can serve as a better alternative to other existing estimation methods. Finally, we analyzed a dataset of regional population movements between cities, demonstrating that our proposed method offers estimations with excellent interpretability compared to other methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01548-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, high-dimensional matrix factor models have been widely applied in various fields. However, there are few methods that effectively handle heavy-tailed data. To address this problem, we introduced a smooth Cauchy loss function and established an optimization objective through norm minimization, deriving a Cauchy version of the weighted iterative estimation method. Unlike the Huber loss weighted estimation method, the weight calculation in this method is a smooth function rather than a piecewise function. It also considers the need to update parameters in the Cauchy loss function with each iteration during estimation. Ultimately, we propose a weighted estimation method with adaptive parameter adjustment. Subsequently, this paper analyzes the theoretical properties of the method, proving that it has a fast convergence rate. Through data simulation, our method demonstrates significant advantages. Thus, it can serve as a better alternative to other existing estimation methods. Finally, we analyzed a dataset of regional population movements between cities, demonstrating that our proposed method offers estimations with excellent interpretability compared to other methods.

Abstract Image

利用考奇加权进行自适应参数调整的稳健矩阵因子分析方法
近年来,高维矩阵因子模型被广泛应用于各个领域。然而,能有效处理重尾数据的方法却很少。针对这一问题,我们引入了平滑的 Cauchy 损失函数,并通过规范最小化建立了优化目标,从而推导出了 Cauchy 版本的加权迭代估计方法。与 Huber 损失加权估计方法不同的是,该方法中的权重计算是一个平滑函数,而不是一个片断函数。它还考虑了在估计过程中,每次迭代都需要更新 Cauchy 损失函数中的参数。最终,我们提出了一种自适应参数调整的加权估计方法。随后,本文分析了该方法的理论特性,证明它具有快速收敛率。通过数据模拟,我们的方法展现出了显著的优势。因此,它可以更好地替代现有的其他估计方法。最后,我们分析了一个城市间区域人口流动的数据集,证明与其他方法相比,我们提出的方法能提供可解释性极佳的估算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信