Estimating Bethe roots with VQE

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
David Raveh, Rafael I Nepomechie
{"title":"Estimating Bethe roots with VQE","authors":"David Raveh, Rafael I Nepomechie","doi":"10.1088/1751-8121/ad6db2","DOIUrl":null,"url":null,"abstract":"Bethe equations, whose solutions determine exact eigenvalues and eigenstates of corresponding integrable Hamiltonians, are generally hard to solve. We implement a Variational Quantum Eigensolver approach to estimating Bethe roots of the spin-1/2 XXZ quantum spin chain, by using Bethe states as trial states, and treating Bethe roots as variational parameters. In numerical simulations of systems of size up to 6, we obtain estimates for Bethe roots corresponding to both ground states and excited states with up to 5 down-spins, for both the closed and open XXZ chains. This approach is not limited to real Bethe roots.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"25 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6db2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bethe equations, whose solutions determine exact eigenvalues and eigenstates of corresponding integrable Hamiltonians, are generally hard to solve. We implement a Variational Quantum Eigensolver approach to estimating Bethe roots of the spin-1/2 XXZ quantum spin chain, by using Bethe states as trial states, and treating Bethe roots as variational parameters. In numerical simulations of systems of size up to 6, we obtain estimates for Bethe roots corresponding to both ground states and excited states with up to 5 down-spins, for both the closed and open XXZ chains. This approach is not limited to real Bethe roots.
用 VQE 估算贝特根
贝特方程的解决定了相应可积分哈密顿的精确特征值和特征状态,但通常很难求解。我们采用变分量子伊根求解器(Variational Quantum Eigensolver)方法,将贝特态作为试验态,并将贝特根作为变分参数来估计自旋-1/2 XXZ 量子自旋链的贝特根。在对最多 6 个系统的数值模拟中,我们获得了闭合和开放 XXZ 链的贝特根的估计值,这些贝特根对应于基态和具有最多 5 个下旋的激发态。这种方法并不局限于实贝特根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信