A generalized dynamic asymmetric exclusion process: orthogonal dualities and degenerations

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Wolter Groenevelt, Carel Wagenaar
{"title":"A generalized dynamic asymmetric exclusion process: orthogonal dualities and degenerations","authors":"Wolter Groenevelt, Carel Wagenaar","doi":"10.1088/1751-8121/ad6f7b","DOIUrl":null,"url":null,"abstract":"In this paper, a generalized version of dynamic asymmetric simple exclusion process (ASEP) is introduced, and it is shown that the process has a Markov duality property with the same process on the reversed lattice. The duality functions are multivariate <italic toggle=\"yes\">q</italic>-Racah polynomials, and the corresponding orthogonality measure is the reversible measure of the process. By taking limits in the generator of dynamic ASEP, its reversible measure, and the duality functions, we obtain orthogonal and triangular dualities for several other interacting particle systems. In this sense, the duality of dynamic ASEP sits on top of a hierarchy of many dualities. For the construction of the process, we rely on representation theory of the quantum algebra <inline-formula>\n<tex-math><?CDATA $\\mathcal U_q(\\mathfrak{sl}_2)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi>U</mml:mi></mml:mrow><mml:mi>q</mml:mi></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"fraktur\">sl</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6f7bieqn1.gif\"></inline-graphic></inline-formula>. In the standard representation, the generator of generalized ASEP can be constructed from the coproduct of the Casimir. After a suitable change of representation, we obtain the generator of dynamic ASEP. The corresponding intertwiner is constructed from <italic toggle=\"yes\">q</italic>-Krawtchouk polynomials, which arise as eigenfunctions of twisted primitive elements. This gives a duality between dynamic ASEP and generalized ASEP with <italic toggle=\"yes\">q</italic>-Krawtchouk polynomials as duality functions. Using this duality, we show the (almost) self-duality of dynamic ASEP.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"50 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6f7b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a generalized version of dynamic asymmetric simple exclusion process (ASEP) is introduced, and it is shown that the process has a Markov duality property with the same process on the reversed lattice. The duality functions are multivariate q-Racah polynomials, and the corresponding orthogonality measure is the reversible measure of the process. By taking limits in the generator of dynamic ASEP, its reversible measure, and the duality functions, we obtain orthogonal and triangular dualities for several other interacting particle systems. In this sense, the duality of dynamic ASEP sits on top of a hierarchy of many dualities. For the construction of the process, we rely on representation theory of the quantum algebra Uq(sl2). In the standard representation, the generator of generalized ASEP can be constructed from the coproduct of the Casimir. After a suitable change of representation, we obtain the generator of dynamic ASEP. The corresponding intertwiner is constructed from q-Krawtchouk polynomials, which arise as eigenfunctions of twisted primitive elements. This gives a duality between dynamic ASEP and generalized ASEP with q-Krawtchouk polynomials as duality functions. Using this duality, we show the (almost) self-duality of dynamic ASEP.
广义动态非对称排斥过程:正交对偶和退化
本文介绍了动态非对称简单排除过程(ASEP)的广义版本,并证明该过程与反转网格上的同一过程具有马尔可夫对偶性。对偶函数是多元 q-Racah 多项式,相应的正交度量是过程的可逆度量。通过对动态 ASEP 的生成器、其可逆度量和对偶函数进行限值,我们得到了其他几个相互作用粒子系统的正交和三角形对偶性。从这个意义上说,动态 ASEP 的对偶性位于众多对偶性的层次之上。对于过程的构造,我们依赖于量子代数 Uq(sl2)的表示理论。在标准表示中,广义 ASEP 的发生器可以从卡西米尔的协积中构造出来。在适当改变表示之后,我们就得到了动态 ASEP 的发生器。相应的交织器由 q-Krawtchouk 多项式构造,而这些多项式是作为扭曲基元的特征函数出现的。这就给出了以 q-Krawtchouk 多项式为对偶函数的动态 ASEP 和广义 ASEP 之间的对偶性。利用这种对偶性,我们证明了动态 ASEP 的(几乎)自对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信