Modes of the Sakai-Sugimoto soliton

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Markus A G Amano, Sven Bjarke Gudnason
{"title":"Modes of the Sakai-Sugimoto soliton","authors":"Markus A G Amano, Sven Bjarke Gudnason","doi":"10.1088/1751-8121/ad742c","DOIUrl":null,"url":null,"abstract":"The instanton in the Sakai-Sugimoto model corresponds to the Skyrmion on the holographic boundary—which is asymptotically flat—and is fundamentally different from the flat Minkowski space Yang–Mills instanton. We use the Atiyah–Patodi–Singer index theorem and a series of transformations to show that there are 6<italic toggle=\"yes\">k</italic> zeromodes—or moduli—in the limit of infinite ‘t Hooft coupling of the Sakai-Sugimoto model. The implications for the low-energy baryons—the Skyrmions—on the holographic boundary, is a scale separation between 2<italic toggle=\"yes\">k</italic> ‘heavy’ massive modes and <inline-formula>\n<tex-math><?CDATA $6k-9$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>6</mml:mn><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mn>9</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"aad742cieqn1.gif\"></inline-graphic></inline-formula> ‘light’ massive modes for <italic toggle=\"yes\">k</italic> &gt; 1; the 9 global transformations that correspond to translations, rotations and isorotations remain as zeromodes. For <italic toggle=\"yes\">k</italic> = 1 there are 2 ‘heavy’ modes and 6 zeromodes due to degeneracy between rotations and isorotations.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad742c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The instanton in the Sakai-Sugimoto model corresponds to the Skyrmion on the holographic boundary—which is asymptotically flat—and is fundamentally different from the flat Minkowski space Yang–Mills instanton. We use the Atiyah–Patodi–Singer index theorem and a series of transformations to show that there are 6k zeromodes—or moduli—in the limit of infinite ‘t Hooft coupling of the Sakai-Sugimoto model. The implications for the low-energy baryons—the Skyrmions—on the holographic boundary, is a scale separation between 2k ‘heavy’ massive modes and 6k9 ‘light’ massive modes for k > 1; the 9 global transformations that correspond to translations, rotations and isorotations remain as zeromodes. For k = 1 there are 2 ‘heavy’ modes and 6 zeromodes due to degeneracy between rotations and isorotations.
堺-杉本孤子的模式
堺-杉本模型中的瞬子对应于全息边界上的Skyrmion--它是渐近平坦的--与平坦的明考斯基空间杨-米尔斯瞬子有本质区别。我们利用阿蒂亚-帕托迪-辛格指数定理和一系列变换来证明,在酒井-杉本模型的无限't Hooft耦合极限中,有 6k 个零模--或者说模态。这对全息边界上的低能重子--Skyrmions--的影响是,在 k = 1 时,2k 个 "重 "大质量模和 6k-9 个 "轻 "大质量模之间存在尺度分离;对应于平移、旋转和等距的 9 个全局变换仍然是零模态。当 k = 1 时,由于旋转和等向性之间的退行性,有 2 个 "重 "模和 6 个零模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信