{"title":"Symmetries for the 4HDM: II. Extensions by rephasing groups","authors":"Jiazhen Shao, Igor P Ivanov, Mikko Korhonen","doi":"10.1088/1751-8121/ad7340","DOIUrl":null,"url":null,"abstract":"We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups <italic toggle=\"yes\">A</italic> and their automorphism groups <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn1.gif\"></inline-graphic></inline-formula>. Previously, we considered all cyclic groups <italic toggle=\"yes\">A</italic> available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups <italic toggle=\"yes\">A</italic>, namely <inline-formula>\n<tex-math><?CDATA $A = \\mathbb{Z}_2\\times\\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn2.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_4\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn3.gif\"></inline-graphic></inline-formula>, and <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_2\\times \\mathbb{Z}_2\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn4.gif\"></inline-graphic></inline-formula>. As <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn5.gif\"></inline-graphic></inline-formula> grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad7340","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups A and their automorphism groups Aut(A). Previously, we considered all cyclic groups A available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups A, namely A=Z2×Z2, Z4×Z2, and Z2×Z2×Z2. As Aut(A) grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.