Symmetries for the 4HDM: II. Extensions by rephasing groups

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Jiazhen Shao, Igor P Ivanov, Mikko Korhonen
{"title":"Symmetries for the 4HDM: II. Extensions by rephasing groups","authors":"Jiazhen Shao, Igor P Ivanov, Mikko Korhonen","doi":"10.1088/1751-8121/ad7340","DOIUrl":null,"url":null,"abstract":"We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups <italic toggle=\"yes\">A</italic> and their automorphism groups <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn1.gif\"></inline-graphic></inline-formula>. Previously, we considered all cyclic groups <italic toggle=\"yes\">A</italic> available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups <italic toggle=\"yes\">A</italic>, namely <inline-formula>\n<tex-math><?CDATA $A = \\mathbb{Z}_2\\times\\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn2.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_4\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn3.gif\"></inline-graphic></inline-formula>, and <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_2\\times \\mathbb{Z}_2\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn4.gif\"></inline-graphic></inline-formula>. As <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn5.gif\"></inline-graphic></inline-formula> grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad7340","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups A and their automorphism groups Aut(A). Previously, we considered all cyclic groups A available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups A, namely A=Z2×Z2, Z4×Z2, and Z2×Z2×Z2. As Aut(A) grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.
4HDM 的对称性: II.重排组的扩展
我们继续对可用作四希格斯双重模型(4HDM)标量部门对称群的有限群进行分类。我们的目标是通过群扩展程序,从非阿贝尔群 A 及其自变群 Aut(A) 开始,系统地构造非阿贝尔群。在此之前,我们考虑了 4HDM 标量扇形的所有循环群 A。在这里,我们进一步发展了这一方法,并将其应用于剩余的重合群 A 的扩展,即 A=Z2×Z2、Z4×Z2 和 Z2×Z2×Z2。随着 Aut(A) 的增长,这一过程变得更加费力,但我们证明了一个同构定理,它有助于对所有选项进行分类。我们还评论了要完成所有可在 4HDM 标量扇形中实现的有限非阿贝尔群的分类,而不出现意外的连续对称性,还有哪些工作要做。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信