Constraints and time evolution in generic f(Riemann) gravity

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Emel Altas, Bayram Tekin
{"title":"Constraints and time evolution in generic f(Riemann) gravity","authors":"Emel Altas, Bayram Tekin","doi":"10.1088/1751-8121/ad74bc","DOIUrl":null,"url":null,"abstract":"We give a detailed canonical analysis of the <italic toggle=\"yes\">n</italic>-dimensional <italic toggle=\"yes\">f</italic>(Riemann) gravity, correcting the earlier results in the literature. We also write the field equations in the Fischer–Marsden form which is amenable to identifying the non-stationary energy on a spacelike hypersurface. We give pure <italic toggle=\"yes\">R</italic><sup>2</sup> and <inline-formula>\n<tex-math><?CDATA $R_{\\mu\\nu}R^{\\mu\\nu}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msub><mml:msup><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"aad74bcieqn1.gif\"></inline-graphic></inline-formula> theories as examples.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad74bc","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We give a detailed canonical analysis of the n-dimensional f(Riemann) gravity, correcting the earlier results in the literature. We also write the field equations in the Fischer–Marsden form which is amenable to identifying the non-stationary energy on a spacelike hypersurface. We give pure R2 and RμνRμν theories as examples.
通用 f(黎曼)引力中的约束和时间演化
我们对 n 维 f(黎曼)引力进行了详细的规范分析,修正了文献中的早期结果。我们还以费舍尔-马斯登形式写出了场方程,这有利于识别空间似超曲面上的非稳态能量。我们给出了纯 R2 和 RμνRμν 理论作为例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信