Frame representation of quantum systems with finite-dimensional Hilbert space

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Nicolae Cotfas
{"title":"Frame representation of quantum systems with finite-dimensional Hilbert space","authors":"Nicolae Cotfas","doi":"10.1088/1751-8121/ad74bd","DOIUrl":null,"url":null,"abstract":"There exist many attempts to define a Wigner function for quantum systems with finite-dimensional Hilbert space, each of them coming with its advantages and limitations. The existing finite versions have simple definitions, but they are based only on the existence of a formal analogy with the continuous-variable Wigner function and do not allow an intuitive state analysis. The continuous versions have more complicated definitions, but they are closer to the original Wigner function and allow a visualization of the quantum states. The version based on the concept of tight frame we present is finite, but it has certain properties and applications similar to those of continuous versions. It allows us to present a new graphical representation of qubit states, and to define new parameters concerning them. An important advantage of frame representation follows from the use of redundant information. The values taken by the frame version of Wigner function are not independent. They have to satisfy a large number of mathematical relations, useful in error detection and correction.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"392 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad74bd","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There exist many attempts to define a Wigner function for quantum systems with finite-dimensional Hilbert space, each of them coming with its advantages and limitations. The existing finite versions have simple definitions, but they are based only on the existence of a formal analogy with the continuous-variable Wigner function and do not allow an intuitive state analysis. The continuous versions have more complicated definitions, but they are closer to the original Wigner function and allow a visualization of the quantum states. The version based on the concept of tight frame we present is finite, but it has certain properties and applications similar to those of continuous versions. It allows us to present a new graphical representation of qubit states, and to define new parameters concerning them. An important advantage of frame representation follows from the use of redundant information. The values taken by the frame version of Wigner function are not independent. They have to satisfy a large number of mathematical relations, useful in error detection and correction.
有限维希尔伯特空间量子系统的框架表示法
有许多人试图为具有有限维希尔伯特空间的量子系统定义维格纳函数,每种方法都有其优势和局限性。现有的有限版本定义简单,但它们只是基于与连续变量维格纳函数的形式类比,无法进行直观的状态分析。连续版本的定义更为复杂,但它们更接近原始维格纳函数,并允许对量子态进行可视化分析。我们提出的基于紧帧概念的版本是有限的,但它的某些特性和应用与连续版本类似。它允许我们以新的图形表示量子比特状态,并定义与之相关的新参数。框架表示法的一个重要优势来自冗余信息的使用。维格纳函数框架版本的取值并不是独立的。它们必须满足大量数学关系,这些关系在错误检测和纠正中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信