{"title":"An Efficient Algorithm to Compute the Toughness in Graphs with Bounded Treewidth","authors":"Gyula Y. Katona, Humara Khan","doi":"10.1007/s00373-024-02828-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>t</i> be a positive real number. A graph is called <i>t</i>-<i>tough</i> if the removal of any vertex set <i>S</i> that disconnects the graph leaves at most |<i>S</i>|/<i>t</i> components. The toughness of a graph is the largest <i>t</i> for which the graph is <i>t</i>-tough. We prove that toughness is fixed-parameter tractable parameterized with the treewidth. More precisely, we give an algorithm to compute the toughness of a graph <i>G</i> with running time <span>\\({\\mathcal {O}}(|V(G)|^3\\cdot \\textrm{tw}(G)^{2\\textrm{tw}(G)})\\)</span> where <span>\\(\\textrm{tw}(G)\\)</span> is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial algorithm.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02828-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let t be a positive real number. A graph is called t-tough if the removal of any vertex set S that disconnects the graph leaves at most |S|/t components. The toughness of a graph is the largest t for which the graph is t-tough. We prove that toughness is fixed-parameter tractable parameterized with the treewidth. More precisely, we give an algorithm to compute the toughness of a graph G with running time \({\mathcal {O}}(|V(G)|^3\cdot \textrm{tw}(G)^{2\textrm{tw}(G)})\) where \(\textrm{tw}(G)\) is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial algorithm.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.