Query complexity lower bounds for local list-decoding and hard-core predicates (even for small rate and huge lists)

Noga Ron-Zewi, Ronen Shaltiel, Nithin Varma
{"title":"Query complexity lower bounds for local list-decoding and hard-core predicates (even for small rate and huge lists)","authors":"Noga Ron-Zewi, Ronen Shaltiel, Nithin Varma","doi":"arxiv-2409.01708","DOIUrl":null,"url":null,"abstract":"A binary code Enc$:\\{0,1\\}^k \\to \\{0,1\\}^n$ is $(0.5-\\epsilon,L)$-list\ndecodable if for all $w \\in \\{0,1\\}^n$, the set List$(w)$ of all messages $m\n\\in \\{0,1\\}^k$ such that the relative Hamming distance between Enc$(m)$ and $w$\nis at most $0.5 -\\epsilon$, has size at most $L$. Informally, a $q$-query local\nlist-decoder for Enc is a randomized procedure Dec$:[k]\\times [L] \\to \\{0,1\\}$\nthat when given oracle access to a string $w$, makes at most $q$ oracle calls,\nand for every message $m \\in \\text{List}(w)$, with high probability, there\nexists $j \\in [L]$ such that for every $i \\in [k]$, with high probability,\nDec$^w(i,j)=m_i$. We prove lower bounds on $q$, that apply even if $L$ is huge (say\n$L=2^{k^{0.9}}$) and the rate of Enc is small (meaning that $n \\ge 2^{k}$): 1. For $\\epsilon \\geq 1/k^{\\nu}$ for some universal constant $0< \\nu < 1$, we\nprove a lower bound of $q=\\Omega(\\frac{\\log(1/\\delta)}{\\epsilon^2})$, where\n$\\delta$ is the error probability of the local list-decoder. This bound is\ntight as there is a matching upper bound by Goldreich and Levin (STOC 1989) of\n$q=O(\\frac{\\log(1/\\delta)}{\\epsilon^2})$ for the Hadamard code (which has\n$n=2^k$). This bound extends an earlier work of Grinberg, Shaltiel and Viola\n(FOCS 2018) which only works if $n \\le 2^{k^{\\gamma}}$ for some universal\nconstant $0<\\gamma <1$, and the number of coins tossed by Dec is small (and\ntherefore does not apply to the Hadamard code, or other codes with low rate). 2. For smaller $\\epsilon$, we prove a lower bound of roughly $q =\n\\Omega(\\frac{1}{\\sqrt{\\epsilon}})$. To the best of our knowledge, this is the\nfirst lower bound on the number of queries of local list-decoders that gives $q\n\\ge k$ for small $\\epsilon$. We also prove black-box limitations for improving some of the parameters of\nthe Goldreich-Levin hard-core predicate construction.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A binary code Enc$:\{0,1\}^k \to \{0,1\}^n$ is $(0.5-\epsilon,L)$-list decodable if for all $w \in \{0,1\}^n$, the set List$(w)$ of all messages $m \in \{0,1\}^k$ such that the relative Hamming distance between Enc$(m)$ and $w$ is at most $0.5 -\epsilon$, has size at most $L$. Informally, a $q$-query local list-decoder for Enc is a randomized procedure Dec$:[k]\times [L] \to \{0,1\}$ that when given oracle access to a string $w$, makes at most $q$ oracle calls, and for every message $m \in \text{List}(w)$, with high probability, there exists $j \in [L]$ such that for every $i \in [k]$, with high probability, Dec$^w(i,j)=m_i$. We prove lower bounds on $q$, that apply even if $L$ is huge (say $L=2^{k^{0.9}}$) and the rate of Enc is small (meaning that $n \ge 2^{k}$): 1. For $\epsilon \geq 1/k^{\nu}$ for some universal constant $0< \nu < 1$, we prove a lower bound of $q=\Omega(\frac{\log(1/\delta)}{\epsilon^2})$, where $\delta$ is the error probability of the local list-decoder. This bound is tight as there is a matching upper bound by Goldreich and Levin (STOC 1989) of $q=O(\frac{\log(1/\delta)}{\epsilon^2})$ for the Hadamard code (which has $n=2^k$). This bound extends an earlier work of Grinberg, Shaltiel and Viola (FOCS 2018) which only works if $n \le 2^{k^{\gamma}}$ for some universal constant $0<\gamma <1$, and the number of coins tossed by Dec is small (and therefore does not apply to the Hadamard code, or other codes with low rate). 2. For smaller $\epsilon$, we prove a lower bound of roughly $q = \Omega(\frac{1}{\sqrt{\epsilon}})$. To the best of our knowledge, this is the first lower bound on the number of queries of local list-decoders that gives $q \ge k$ for small $\epsilon$. We also prove black-box limitations for improving some of the parameters of the Goldreich-Levin hard-core predicate construction.
本地列表解码和硬核谓词的查询复杂度下限(即使对于小速率和大列表也是如此)
二进制编码 Enc$:\{0,1\}^k \to \{0,1\}^n$ 是 $(0.5-\epsilon,L)$-listdecodable if for all $w \in \{0,1}^n$, the set List$(w)$ of all messages $m\in \{0,1}^k$ such that the relative Hamming distance between Enc$(m)$ and $w$ is at most $0.5 -\epsilon$, has size at most $L$.非正式地讲,Enc 的 $q$-query locallist-decoder 是一个随机过程 Dec$:[k]\times[L]\to\{0,1\}$,当给定对字符串 $w$ 的甲骨文访问权限时,最多进行 $q$ 的甲骨文调用,并且对于 \text{List}(w)$ 中的每条信息 $m,高概率地,[L]$ 中存在 $j,从而对于 [k]$ 中的每条 $i,高概率地,Dec$^w(i,j)=m_i$。我们证明了关于 $q$ 的下限,即使 $L$ 非常大(例如$L=2^{k^{0.9}}$)且 Enc 的速率很小(意味着 $n \ge 2^{k}$),这些下限仍然适用:1.对于某个通用常数$0< \nu <1$的$epsilon \geq 1/k^{\nu}$,我们证明了一个下限:$q=\Omega(\frac{log(1/\delta)}{\epsilon^2})$,其中$\delta$是本地列表解码器的错误概率。这个界限是正确的,因为 Goldreich 和 Levin(STOC,1989 年)对哈达玛德编码(有$n=2^k$)的匹配上界是$q=O(\frac\{log(1/\delta)}{\epsilon^2})$。这一约束扩展了格林伯格、沙尔蒂尔和维奥拉(FOCS 2018)的早期工作,该工作只有在某个普适常数$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信