Two-Sided Lossless Expanders in the Unbalanced Setting

Eshan Chattopadhyay, Mohit Gurumukhani, Noam Ringach, Yunya Zhao
{"title":"Two-Sided Lossless Expanders in the Unbalanced Setting","authors":"Eshan Chattopadhyay, Mohit Gurumukhani, Noam Ringach, Yunya Zhao","doi":"arxiv-2409.04549","DOIUrl":null,"url":null,"abstract":"We present the first explicit construction of two-sided lossless expanders in\nthe unbalanced setting (bipartite graphs that have many more nodes on the left\nthan on the right). Prior to our work, all known explicit constructions in the\nunbalanced setting achieved only one-sided lossless expansion. Specifically, we show that the one-sided lossless expanders constructed by\nKalev and Ta-Shma (RANDOM'22) -- that are based on multiplicity codes\nintroduced by Kopparty, Saraf, and Yekhanin (STOC'11) -- are, in fact,\ntwo-sided lossless expanders. Using our unbalanced bipartite expander, we easily obtain lossless\n(non-bipartite) expander graphs with high degree and a free group action. As\nfar as we know, this is the first explicit construction of lossless\n(non-bipartite) expanders with $N$ vertices and degree $\\ll N$.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"225 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first explicit construction of two-sided lossless expanders in the unbalanced setting (bipartite graphs that have many more nodes on the left than on the right). Prior to our work, all known explicit constructions in the unbalanced setting achieved only one-sided lossless expansion. Specifically, we show that the one-sided lossless expanders constructed by Kalev and Ta-Shma (RANDOM'22) -- that are based on multiplicity codes introduced by Kopparty, Saraf, and Yekhanin (STOC'11) -- are, in fact, two-sided lossless expanders. Using our unbalanced bipartite expander, we easily obtain lossless (non-bipartite) expander graphs with high degree and a free group action. As far as we know, this is the first explicit construction of lossless (non-bipartite) expanders with $N$ vertices and degree $\ll N$.
非平衡设置中的双面无损扩展器
我们首次提出了在不平衡图(左侧节点多于右侧节点的双向图)中明确构建双面无损扩展器的方法。在我们的研究之前,所有已知的非平衡环境下的显式构造都只能实现单边无损扩展。具体来说,我们证明了 Kalev 和 Ta-Shma (RANDOM'22) 基于 Kopparty、Saraf 和 Yekhanin (STOC'11) 提出的多重性代码构建的单边无损扩展器实际上是双边无损扩展器。利用我们的非平衡双方位展开图,我们很容易得到具有高阶和自由群作用的无损(非双方位)展开图。据我们所知,这是第一次明确构造出顶点为 $N$、阶数为 $\ll N$ 的无损(非双态)展开图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信